精英家教网 > 高中数学 > 题目详情
A(-3,0),B(0,
3
),O
为坐标原点,点C在第二象限内,且∠AOC=60°,
OC
=λ
OA
+
OB
,则实数λ的值是
 
分析:∠AOC=60°,
OC
=λ
OA
+
OB
,则
OC
=(-3λ,0)+(0,
3
)
=(-3λ,
3
)
,由此可求出实数λ的值.
解答:解:∵∠AOC=60°,
OC
=λ
OA
+
OB

OC
=(-3λ,0)+(0,
3
)
=(-3λ,
3
)

tan60°=
3
,∴tan60°=
3
,λ=
1
3
.

答案:
1
3
点评:解题时要仔细审题,认真挖掘隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C的对边分别是a,b,c,面积为S△ABC,且
m
=(b2+c2-a2,-2),
n
=(sinA,S△ABC)
m
n

(1)求函数f(x)=4cosxsin(x-
A
2
)
在区间[0,
π
2
]上的值域;
(2)若a=3,且sin(B+
π
3
)=
3
3
,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
和它们的夹角θ=<
a
b
,定义
a
b
=|
a
|•|
b
|sinθ
,若
a
=(-3,0),
b
=(1,2)
,则
a
b
  )

查看答案和解析>>

科目:高中数学 来源:泉州模拟 题型:填空题

A(-3,0),B(0,
3
),O
为坐标原点,点C在第二象限内,且∠AOC=60°,
OC
=λ
OA
+
OB
,则实数λ的值是______.

查看答案和解析>>

同步练习册答案