精英家教网 > 高中数学 > 题目详情
设两个非零向量
e1
e2
不共线.
(1)设
m
=k
e1
+
e2
n
=
e1
+k
e2
,且
m
n
,求实数k的值;
(2)若丨
e1
丨=2,丨
e2
丨=3,
e1
e2
的夹角为60°,试确定k的值,使k
e1
+
e2
e1
+k
e2
 垂直.
分析:(1)直接利用共线向量基本定理求解k的值;
(2)由已知条件求出
e1
e2
的数量积,再由k
e1
+
e2
e1
+k
e2
 的数量积为0列式求k的值.
解答:解:(1)∵
m
=k
e1
+
e2
n
=
e1
+k
e2

m
n
,得k
e1
+
.
e2
=λ(
e1
+k
e2
)

k=λ
kλ=1
,解得k=±1;
(2)由丨
e1
丨=2,丨
e2
丨=3,
e1
e2
的夹角为60°,
e1
e2
=|
e1
||
e2
|cos60°=2×3×
1
2
=3

由k
e1
+
e2
e1
+k
e2
 垂直,则
(k
e1
+
e2
)•(
e1
+k
e2
 )=k
e1
2
+(k2+1)
e1
e2
+k
e2
2

=4k+3(k2+1)+9k=0.
∴k=
-13±
133
6
点评:本题考查了共线向量基本定理,考查了向量的数量积判断两个向量的垂直关系,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两个非零向量e1与e2不共线,(1)如果
AB
=e1+e2
BC
=e1+8e2
CD
=3(e1-e2).(2)试确定实数k的值,使ke1+e2和e1+ke2共线.求证:A、B、D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(
π
2
+α)•cos(
π
2
-α)
cos(π-α)
+
sin(π-α)•sin(-α)
sin(π+α)

(2)设两个非零向量
e1
e2
不共线,且
AB
=
e1
+2
e2
BC
=-2
e1
+3
e2
CD
=5
e1
+3
e2
,求证:A,B,D三点在同一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个非零向量
e1
e2
不共线,若
AB
=
e1
+
e2
BC
=2
e1
+8
e2
CD
=3(
e1
-
e2
)

(1)求证:A、B、D三点共线;
(2)试确定实数k的值,使得k
e1
+
e2
e1
+k
e2
共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61
,求
a
b
的值;
(2)设两个非零向量
e1
e2
不共线.如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
CD
=3
e1
-3
e2

求证:A、B、D三点共线.

查看答案和解析>>

同步练习册答案