精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形与梯形所在的平面互相垂直, 的中点, 中点.

1)求证:平面∥平面

2)求证:平面平面

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)由MNED,得MN平面ADEF,得平面BMN平面ADEF;
(2)由题意得EDBC,得BCBD,从而得BC平面BDE.进而平面BCE平面BDE,
(3)设点D到平面BEC的距离为h,转化为VD-BEC=VE-BCD,从而求出h的值.

试题解析:

(1)证明:在中, 分别为的中点, 所以平面,且平面

所以平面.;

因为中点,

所以四边形为平行四边形,所以

平面,且平面

所以平面

平面平面

(2)证明:在矩形中, .又因为平面 平面,且平面平面,所以平面.所以

在直角梯形中, ,可得

中, ,因为,所以

因为,所以平面

平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足:2sinA+B)-=0,求角C的度数,边c的长度及ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体中, 为棱上一点,

1,求异面直线所成角的正切值;

2,求证平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,1), = ,函数f(x)= 的最大值为6.
(1)求A;
(2)将函数f(x)的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,如图,网格纸上正方形小格的边长为,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体,第二次切削沿长方体的对角面刨开,得到两个三棱柱,第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆 相切,且与圆 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点的平行线交曲线, 两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

如图,在直三棱柱中,,点的中点,

(1)求证:平面

(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 ,点Q是边AB上一点,且
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标;
(3)若R为线段OQ上的一个动点,试求 的取值范围.

查看答案和解析>>

同步练习册答案