精英家教网 > 高中数学 > 题目详情
设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足,则椭圆的离心率的取值范围是(   )
A.B.C.D.
A
,由,得,又,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

是椭圆上的一点,是焦点,且,则的面积为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线与该椭圆交于点,
为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的中心、右焦点、右顶点及右准线与x轴的交点依次为O、F、G、H,则的最大值为(   )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆上的点到焦点的距离为2,的中点,则为坐标原点)的值为
A.8B.2C.4D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定点并求出定点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的椭圆的一个焦点为为椭圆上一点,的面积为
(1)求椭圆的方程;
(2)是否存在平行于的直线,使得直线与椭圆相交于两点,且以线段为有经的圆恰好经过原点?若存在,求出的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 12分)如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

(1)求椭圆的方程;
(2)设直线lF点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=一x与椭圆C: =1(a>b>0)交于A、B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为.
A.       B.         C.         D.4-2

查看答案和解析>>

同步练习册答案