精英家教网 > 高中数学 > 题目详情
1.已知p:函数y=lg(x2+mx+1)的值域为R.q:函数y=lg[4x2+4(m-2)x+1]的定义域为R.若p∨q为真,p∧q为假,求实数m的取值范围.

分析 若命题p是真命题,则△≥0,解得m范围.若命题q是真命题,则△<0,解得m范围.若p∨q为真,p∧q为假,则p与q必然一真一假.即可得出.

解答 解:命题p:函数y=lg(x2+mx+1)的值域为R,∴△=m2-4≥0,解得m≥2或m≤-2.
命题q:函数y=lg[4x2+4(m-2)x+1]的定义域为R,∴△=16(m-2)2-16<0,解得1<m<3.
若p∨q为真,p∧q为假,
则p与q必然一真一假.
∴$\left\{\begin{array}{l}{m≥2或m≤-2}\\{m≤1或m≥3}\end{array}\right.$,或$\left\{\begin{array}{l}{-2<m<2}\\{1<m<3}\end{array}\right.$,
解得m≤-2或m≥3,或1<m<2.
∴实数m的取值范围是m≤-2或m≥3,或1<m<2.

点评 本题考查了对数化为的单调性、二次函数的取值与判别式的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x,x∈R,将函数y=f(x)的图象上各点的纵坐标缩短到原来的$\frac{1}{2}$,把所得到的图象再向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求:
(I)函数g(x)的解析式和单调递增区间;
(Ⅱ)函数g(x)在区间[-$\frac{π}{6}$,-$\frac{π}{24}$]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}中,a1-a3+a5=2,a3-a5+a7=5,那么a5-a7+a9=(  )
A.8B.15C.25D.$\frac{25}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知AB是抛物线y2=4x的焦点弦,其端点A,B坐标分别为(x1,y1),(x2,y2)且满足x1+x2=6,则直线AB的斜率是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=ax-b的函数图象如图所示,其中a和b的取值范围是0<a<1,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2+6x+1,若关于x的不等式f(x)<m在[-5,-2]上恒成立,则实数m的取值范围是(-4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于数列{an},a1=4,an+1=f(an),依照下表则a2015等于(  )
X12345
F(x)54312
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(-1,1)上的单调性,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设曲线$\sqrt{\frac{{x}^{2}}{4{n}^{2}}}$+$\sqrt{{y}^{2}}$=1(n∈N*)所围成的平面区域Dn,记Dn内(含区域边界)的整点(整点即纵、横坐标均为整数的点)个数为an,数列{an}的前n项和为Sn
(1)若a∈N*,且$\frac{{S}_{n}}{2n+5}$+$\frac{32}{{a}_{n}+1}$≥a恒成立,求a的最大值;
(2)在(1)a取最大值的条件下,当bn=$\frac{(a-2)^{n}•{S}_{n}}{(2n+5)}$时,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案