精英家教网 > 高中数学 > 题目详情
19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,过点F作双曲线C的一条渐近线的垂线,垂足为H,点P在双曲线上,且$\overrightarrow{FP}$=3$\overrightarrow{FH}$则双曲线的离心率为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{13}}{2}$D.$\sqrt{13}$

分析 根据向量条件,求出P的坐标,代入双曲线方程,即可得出结论.

解答 解:由题意,设P(x,y),直线FH的方程为y=$\frac{a}{b}$(x+c),
与渐近线y=-$\frac{b}{a}$x联立,可得H的坐标为(-$\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
∵$\overrightarrow{FP}$=3$\overrightarrow{FH}$,
∴(x+c,y)=3(-$\frac{{a}^{2}}{c}$+c,$\frac{ab}{c}$),
∴x=-$\frac{3{a}^{2}}{c}$+2c,y=$\frac{3ab}{c}$,
代入双曲线方程可得,$\frac{(-\frac{3{a}^{2}}{c}+2c)^{2}}{{a}^{2}}-\frac{9{a}^{2}}{{c}^{2}}$=1,
化简可得$\frac{4{c}^{2}}{{a}^{2}}$=13,
∴e=$\frac{c}{a}$=$\frac{\sqrt{13}}{2}$.
故选C.

点评 本题考查双曲线的方程与性质,考查向量知识的运用,确定P的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,且PF1⊥PF2,e1,e2分别是两曲线C1,C2的离心率,则2e12+$\frac{{e}_{2}^{2}}{2}$的最小值为(  )
A.1B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)求y=g(x)的最大值;
(Ⅲ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).若a≥0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx的结果是π+$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.
(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若正整数N除以正整数m后的余数为n,则记为N≡n(bmodm),例如10≡2(bmod4).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i等于(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a=log43,则2a+2-a=$\frac{4\sqrt{3}}{3}$;方程log2(9x-1-5)=log2(3x-1-2)+2的解为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}中,a1=2,an+1=2an+3•2n,则数列{an}的通项公式an=(3n-1)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x∈R,则x=1是x3=x的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案