精英家教网 > 高中数学 > 题目详情
(2004•武汉模拟)(理科)若锐角α,β满足tanα•tanβ=
13
7
,且sin(α-β)=
5
3
,求

(1)cos(α-β); (2)cos(α+β)
分析:(1)由α,β为锐角,得到α-β的范围,再根据sin(α-β)的值大于0,得到α-β为锐角,故利用同角三角函数间的基本关系即可求出cos(α-β)的值;
(2)分别利用两角和与差的余弦函数公式化简
cos(α+β)
cos(α-β)
后,分子分母同时除以cosαcosβ,利用同角三角函数间的基本关系弦化切后,将tanαtanβ的值代入求出
cos(α+β)
cos(α-β)
的值,然后再由(1)得到的cos(α-β)的值,即可求出cos(α+β)的值.
解答:解:(1)∵α,β为锐角,则-
π
2
<α-β<
π
2

而sin(α-β)=
5
3
>0,则0<α-β<
π
2

∴cos(α-β)=
1-sin2(α-β)
=
2
3
;(6分)
(2)∵tanαtanβ=
13
7

cos(α+β)
cos(α-β)
=
cosαcosβ-sinαsinβ
cosαcosβ+sinαsinβ

=
1-tanαtanβ
1+tanαtanβ
=
1-
13
7
1+
13
7
=-
3
10

又cos(α-β)=
2
3

∴cos(α+β)=-
1
5
.(12分)
点评:此题考查了同角三角函数间的基本关系,以及两角和与差的余弦函数公式,第二问先求出
cos(α+β)
cos(α-β)
的值,然后借助第一问求出的cos(α-β)的值,从而得到cos(α+β)的值,注意此方法的技巧性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•武汉模拟)(理科)已知两点A(3,2)和B(-1,4)到直线mx+y+3=0距离相等,则m值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•武汉模拟)若双曲线
x2
9
-
y2
m
=1
的渐近线l方程为y=±
5
3
x
,则双曲线焦点F到渐近线l的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•武汉模拟)(文科)锐角α满足sinα•cosα=
1
4
,则tanα
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•武汉模拟)已知函数y=f-1(x)的图象过(1,0),则y=f(
1
2
x-1)
的反函数的图象一定过点(  )

查看答案和解析>>

同步练习册答案