精英家教网 > 高中数学 > 题目详情
9.设地球的半径为R,在北纬45°纬线圈上有两点A、B,A在西经40°经线上,B在东经50°经线上,求A,B两点间纬线圈的劣弧长及A,B两点间球面距离.

分析 A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.

解答 解:地球表面上从A地(北纬45°,西经40°)到B地(北纬45°,东经50°)
AB的纬圆半径是$\frac{\sqrt{2}R}{2}$,经度差是90°,
所以A,B两点间纬线圈的劣弧长为$\frac{π}{2}•\frac{\sqrt{2}R}{2}$=$\frac{\sqrt{2}πR}{4}$
又AB=R
所以球心角是θ=$\frac{π}{3}$,
所以A、B两地的球面距离是$\frac{πR}{3}$.

点评 本题考查球面距离及其它计算等基础知识,考查运算求解能力,考查空间想象能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.函数y=3cos(kx+$\frac{π}{4}$)(k∈N+),若对任意的m∈R,在[m,m+1]之间f(x)至少取得最大值、最小值各一次,求实数k的最小值,并就最小的k值求出最小正周期及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.空间四边形ABCD中,P、Q、R、H分别是AB、BC、CD、DA的中点.
(1)求证:四边形PQRH是平行四边形;
(2)若AC=BD,则四边形PQRH是什么四边形?
(3)若AC⊥BD,则四边形PQRH是什么四边形?
(4)空间四边形ABCD满足什么条件时,PQRH是正方形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.急剧增加的人口已经使我们赖以生存的地球不堪重负,控制人口急剧增长的急迫任务摆在我们面前.
(1)世界人口在过去的40 年内翻了一番,问每年人口平均增长率是多少?
(2)我国人口在2003年底达到13.14亿,若将人口平均增长率控制在1%以内,我国人口在2013年底最多有多少亿?
以下对数值可供计算使用:
N1.0101.0151.0171.3102.000
lgN0.00430.00650.00750.11730.3010
N12.4813.1113.1414.51
lgN1.09621.11761.11861.1616

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x与y之间的一组数据:
x1234
y1357
则y与x的线性回归方程$\widehat{y}$=bx+a必过(  )
A.(2,3)B.(2.5,3.5)C.(3,5)D.(2.5,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.把一颗骰子连续投掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求投掷两次所得点数之和能被4整除的概率;
(2)设向量$\overrightarrow{p}$=(x,y),$\overrightarrow{q}$=(2,-1),求$\overrightarrow{p}$⊥$\overrightarrow{q}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂受政府财政资助生产一种特殊产品,生产这种产品每年需要固定投资80万元,此外每生产1件该产品还需要增加投资2万元,若年产量为x(x∈N*)件,当x≤18时,政府全年合计给予财政拨款为(30x-x2)万元;当x>18时,政府全年合计给予财政拨款为(225+0.5x)万元,记该工厂生产这种产品全年净收入为y万元.
(Ⅰ)求y(万元)与x(件)的函数关系式;
(Ⅱ)该工厂的年产量为多少件时,全年净收入达到最大,并求最大值.
(注:年净收入=政府年财政拨款额-年生产总投资)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(2,0)是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右顶点,且椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$.过点M(-3,0)作直线l交椭圆C于P、Q两点.
(1)求椭圆C的方程,并求出直线l的斜率的取值范围;
(2)椭圆C的长轴上是否存在定点N(n,0),使得∠PNM=∠QNA恒成立?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x+2与圆x2+y2=2的位置关系为(  )
A.相切B.相交但直线不过圆心
C.直线过圆心D.相离

查看答案和解析>>

同步练习册答案