【题目】已知函数.
(1)当时,利用函数单调性的定义判断并证明的单调性,并求其值域;
(2)若对任意,求实数的取值范围.
【答案】(1)见解析;(2) a>-3.
【解析】试题分析:(I)利用函数单调性的定义,设1≤,利用作差法比较f(x1)与f(x2)的大小,进而证明函数f(x)为单调减函数,再利用单调性求函数最值即可;
(II)根据题意:“对任意x∈[1,+∞), ,恒成立,只需对任意恒成立,再设,利用二次函数的性质求出最小值,即可得到实数a的取值范围.
试题解析:
(1) 任取 则
,
当
∵∴,恒成立 ∴ ∴上是增函数,
∴当x=1时,f(x)取得最小值为,∴f(x)的值域为
(2) ,
∵对任意,恒成立
∴只需对任意恒成立。设
∵g(x)的对称轴为x=-1, ∴只需g(1)>0便可, g(1)=3+a>0,
∴a>-3。
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):
空气质量指数 | ||||||
空气质量等级 | 级优 | 级良 | 级轻度污染 | 级中度污染 | 级重度污染 | 级严重污染 |
该社团将该校区在年天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校年月、日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC, 百米, 百米,广场入口P在AB上,且,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),区域拟建为跳舞健身广场, 区域拟建为儿童乐园,其它区域铺设绿化草坪,设.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是偶函数.
(1)求的值;
(2)若函数的图象与直线没有交点,求b的取值范围;
(3)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1: (t为参数)曲线C2:+y2=4.
(1)在同一平面直角坐标系中,将曲线C2上的点按坐标变换后得到曲线C′。求曲线C′的普通方程,并写出它的参数方程;
(2)若C1上的点P对应的参数为t=π/2,Q为C′上的动点,求PQ中点M到直线C3: (t为参数)的距离的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC∩BD=E,AD=2,AB=2,BC=6,求证:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x(吨)的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com