精英家教网 > 高中数学 > 题目详情
9.已知一个几何体是由上下两部分组成的合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为$\sqrt{5}$,则该几何体的体积是(  )
A.$\frac{4π}{3}$B.C.$\frac{8π}{3}$D.$\frac{10π}{3}$

分析 由三视图知,此组合体上部是一个圆锥,下部是一个半球,半球体积易求,欲求圆锥体积需先求圆锥的高,再由公式求体积,最后再想加求出组合体的体积.

解答 解:这个几何体上部为一圆锥,下部是一个半球,
由于半球的半径为1,故其体积为$\frac{1}{2}×\frac{4}{3}$π×13=$\frac{2π}{3}$,
圆锥的高为$\sqrt{(\sqrt{5})^{2}-1}$=2,
故此圆锥的体积为$\frac{1}{3}$×2×π×12=$\frac{2π}{3}$.
∴此几何体的体积是V=$\frac{2π}{3}+\frac{2π}{3}$=$\frac{4π}{3}$.
故选:A.

点评 本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数),已知该食品在0℃的保鲜时间是192小时,在33℃的保鲜时间是24小时
(1)求k的值
(2)该食品在11℃和22℃的保鲜时间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,复数z=a+i(a∈R)满足z2+z=1-3i,则a=(  )
A.-2B.-2或1C.2或-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B为钝角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是侧棱AA1上的动点.
(1)当AA1=AB=AC时,求证:A1C⊥BC1
(2)试求三棱锥P-BCC1的体积V取得最大值时的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点P(1,2),并且在两坐标轴上的截距相等的直线方程是(  )
A.x+y-3=0或x-2y=0B.x+y-3=0或2x-y=0
C.x-y+1=0或x+y-3=0D.x-y+1=0或2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线x=2y2的焦点坐标是(  )
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左支、右支分别交于B,C两点,A为右顶点,O为坐标原点,若∠AOC=∠BOC,则该双曲线的离心率为$\frac{\sqrt{19}}{2}$.

查看答案和解析>>

同步练习册答案