精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知椭圆 =l (a>b>0)的焦距为2,离心率为 ,椭圆的右顶点为A.

(1)求该椭圆的方程:
(2)过点D( ,﹣ )作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

【答案】
(1)

解:由题意可知:椭圆 =l (a>b>0),焦点在x轴上,2c=1,c=1,

椭圆的离心率e= = ,则a= ,b2=a2﹣c2=1,

则椭圆的标准方程:


(2)

解:证明:设P(x1,y1),Q(x2,y2),A( ,0),

由题意PQ的方程:y=k(x﹣ )﹣

,整理得:(2k2+1)x2﹣(4 k2+4 k)x+4k2+8k+2=0,

由韦达定理可知:x1+x2= ,x1x2=

则y1+y2=k(x1+x2)﹣2 k﹣2 =

则kAP+kAQ= + =

由y1x2+y2x1=[k(x1 )﹣ ]x2+[k(x2 )﹣ ]x1=2kx1x2﹣( k+ )(x1+x2)=﹣

kAP+kAQ= = =1,

∴直线AP,AQ的斜率之和为定值1.


【解析】(1)由题意可知2c=2,c=1,离心率e= ,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣ )﹣ ,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.

(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;

(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=ADBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,⊥底面的中点.

已知.求:

(1)三棱锥PABC的体积;

(2)异面直线BCAD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且 =
(1)求异面直线MN与PC所成角的大小;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为

(1)求椭圆的方程;

(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案