精英家教网 > 高中数学 > 题目详情
17.已知sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求sin2α的值;
(Ⅱ)求tan($\frac{3π}{4}$-α)的值.

分析 (Ⅰ)由条件利用同角三角函数的基本关系求得cosα的值,可得 sin2α=2sinαcosα的值.
(Ⅱ)由(Ⅰ)求得tanα的值,再利用两角差的正切公式求得tan($\frac{3π}{4}$-α)的值.

解答 解:(Ⅰ)因为sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{4}{5}$,∴sin2α=2sinαcosα=-$\frac{24}{25}$.  
(Ⅱ)由(Ⅰ)得tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
所以tan($\frac{3π}{4}$-α)=$\frac{tan\frac{3π}{4}-tanα}{1+tan\frac{3π}{4}•tanα}$=$\frac{-1+\frac{3}{4}}{1+\frac{3}{4}}$=-$\frac{1}{7}$.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.数列{an}中,a1=3,an+1=2an+2.
(I)求证:{an+2}是等比数列,并求数列{an}的通项公式;
(II)设bn=$\frac{n}{{a}_{n}+2}$,求Sn=b1+b2+…+bn,并证明:?n∈N*,$\frac{1}{5}$≤Sn<$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若($\overrightarrow{a}$+3$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-5$\overrightarrow{b}$),且($\overrightarrow{a}$-4$\overrightarrow{b}$)⊥(7$\overrightarrow{a}$-5$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角大小为0或π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.组合数$C_n^m+2C_n^{m-1}+C_n^{m-2}$(n≥m≥2,m,n∈N*)恒等于(  )
A.$C_{n+2}^m$B.$C_{n+2}^{m+1}$C.$C_{n+1}^m$D.$C_{n+1}^{m+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当x,y满足条件$\left\{\begin{array}{l}{x≥y}\\{y≥0}\\{2x+y-3≥0}\end{array}\right.$时,目标函数z=x+3y的最小值是(  )
A.0B.1.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知球的半径为24cm,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是12288πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若△ABC的面积S=a2-b2-c2+2bc,则sinA=$\frac{8}{17}$.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.有一列向量$\left\{{\overrightarrow{a_n}}\right\}$:$\overrightarrow{a_1}=({x_1},{y_1}),\overrightarrow{a_2}=({x_2},{y_2}),…,\overrightarrow{a_n}=({x_n},{y_n})$,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列$\left\{{\overrightarrow{a_n}}\right\}$,满足$\overrightarrow{a_1}=(-20,13)$,$\overrightarrow{a_3}=(-18,15)$,那么这列向量$\left\{{\overrightarrow{a_n}}\right\}$中模最小的向量的序号n=4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件能唯一确定一个平面的是(  )
A.空间任意三点B.不共线三点C.共线三点D.两条异面直线

查看答案和解析>>

同步练习册答案