精英家教网 > 高中数学 > 题目详情
14.在平行四平行边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=2$\overrightarrow{MA}$,N为BC的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$B.$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$C.$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$

分析 画出图形,利用向量关系求解即可.

解答 解:在平行四边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=2$\overrightarrow{MA}$,可得M是OA的三等分点,N为BC的中点,
可得$\overrightarrow{MN}$=$\overrightarrow{MO}$+$\overrightarrow{OC}$+$\frac{1}{2}\overrightarrow{CB}$=$-\frac{2}{3}\overrightarrow{a}$+$\overrightarrow{c}$$+\frac{1}{2}$$\overrightarrow{a}$=$\overrightarrow{c}-\frac{1}{6}\overrightarrow{a}$.
故选:B.

点评 本题考查四边形向量的加减法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求下列各式的值.
①a+a-1;   
②a2+a-2
(2)计算(2$\frac{7}{9}$)0+(0.1)-1+lg$\frac{1}{50}$-lg2+($\frac{1}{7}$)-1+log75的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A={x|-1<x<4},B={x|-5$<x<\frac{3}{2}$},C={x|x<2a},求:
(1)A∪B      
(2)A⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}满足a2=2,a5=8
(1)求数列{an}的通项公式;
(2)设各项均为正数的等比数列bn}的前n项和为Tn若b3=a3,T2=3,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=ax3+x2在x=1处的切线方程与直线y=x-2平行,则y=f(x)的解析式为f(x)=-$\frac{1}{3}$x3+x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,侧面PAD是边长为2的正三角形,平面ABCD⊥平面PAD,M是PC的中点,O是AD的中点,则直线BM与平面PCO所成角的正弦值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若等差数列{an}中,${a_3}+a_4^{\;}+{a_5}=2$,a4+a5+a6=5,则a8+a9+a10=17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设A={(x,y)|y=-x+1},B={(x,y)|y=x-1},则A∩B=(  )
A.{1,0}B.{(1,0)}C.{x=1,y=0}D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x、y满足约束条件$\left\{{\begin{array}{l}{y≤2{\;}^{\;}}\\{x+y≥1}\\{x-y≤1}\end{array}}$,则z=$\sqrt{{x^2}+{y^2}}$的最大值为$\sqrt{13}$.

查看答案和解析>>

同步练习册答案