【题目】如图,在四棱锥P-ABCD中,平面PCD,,,,E为AD的中点,AC与BE相交于点O.
(1)证明:平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】某工厂质检部门要对该厂流水线生产出的一批产品进行检验,如果检查到第件仍未发现不合格品,则此次检查通过且认为这批产品合格,如果在尚未抽到第件时已检查到不合格品则拒绝通过且认为这批产品不合格.设这批产品的数量足够大,可以认为每次检查查到不合格品的概率都为,即每次抽查的产品是相互独立的.
(1)若,求这批产品能够通过检查的概率;
(2)已知每件产品质检费用为50元,若,设对这批产品的质检个数记作,求的分布列;
(3)在(2)的条件下,已知1000批此类产品,若,则总平均检查费用至少需要多少元?(总平均检查费用每批次平均检查费用批数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:(t为参数),直线l与曲线C分别交于M,N两点.
(1)写出曲线C和直线l的普通方程;
(2)若点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形、的边长都是1,而且平面、互相垂直.点M在上移动,点N在上移动,若().
(1)当a为何值时,的长最小;
(2)当长最小时,求面与面所成的二面角α的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,点在此抛物线上,,不过原点的直线与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.
(1)求抛物线C的方程;
(2)证明:直线恒过定点;
(3)若线段AB中点的纵坐标为2,求此时直线和圆M的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com