精英家教网 > 高中数学 > 题目详情

【题目】如图,已知直线交抛物线两点(点在点左侧),过线段(两端点除外)上的任意一点作直线,使得直线与抛物线在点处的切线平行,设直线与抛物线交于两点.

1)记直线的斜率分别为,证明:

2)若,求的面积.

【答案】1)见解析;(2.

【解析】

1)设,利用导数的几何意义及直线的斜率公式求解;

2)根据,可得,表示出,再表示出,得到,设线段的中点为,求出,最后根据的中点与点的连线平行于轴,得,从而得结果.

1)由得,,则

设点,由导数的几何意义知,直线的斜率为

由题意知点.设点

,即

因为

所以

2)由可知,

不妨设点上方,则

直线的方程为

,得点的坐标为

所以,同理可得

所以,得

设线段的中点为

则点的坐标为,即

连接,易知

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面

1)求证:

2)若直线与平面所成的角为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两同学参加数学竞赛培训,在培训期间,他们参加了8次测验,成绩(单位:分)记录如下:

A 71 62 72 76 63 70 85 83

B 73 84 75 73 78 76 85

B同学的成绩不慎被墨迹污染(分别用mn表示).

1)用茎叶图表示这两组数据,现从AB两同学中选派一人去参加数学竞赛,你认为选派谁更好?请说明理由(不用计算);

2)若B同学的平均分为78,方差,求mn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集,其中,且,若对两数中至少有一个属于,则称数集具有性质.

1)分别判断数集与数集是否具有性质,说明理由;

2)已知数集具有性质,判断数列是否为等差数列,若是等差数列,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线经过点,过的焦点作两条互相垂直的直线,直线交于两点,直线交于两点,则下列结论正确的是(

A.B.的最小值为16

C.四边形的面积的最小值为64D.若直线的斜率为2,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F2是双曲线的右焦点,动点A在双曲线左支上,直线l1txy+t20与直线l2x+ty+2t10的交点为B,则|AB|+|AF2|的最小值为(

A.8B.C.9D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在党中央的英明领导下,在全国人民的坚定支持下,中国的抗击“新型冠状肺炎”战役取得了阶段性胜利,现在摆在我们大家面前的是有序且安全的复工复产.某商场为了提振顾客的消费信心,对某中型商品实行分期付款方式销售,根据以往资料统计,顾客购买该商品选择分期付款的期数ξ的分布列为

其中0a10b1.

1)求购买该商品的3位顾客中,恰有1位选择分4期付款的概率;

2)商场销售一件该商品,若顾客选择分4期付款,则商场获得的利润为2000元;若顾客选择分5期付款,则商场获得的利润为2500元;若顾客选择分6期付款,则商场获得的利润为3000元,假设该商场销售两件该商品所获得的利润为X(单位:元),

i)设X5500时的概率为m,求当m取最大值时,利润X的分布列和数学期望;

ii)设某数列{xn}满足x10.4xna2xn+1b,若a0.25,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(a>b>0)的两焦点之间的距离为2,两条准线间的距离为8,直线lyk(xm)(mR)与椭圆交于PQ两点.

(1) 求椭圆C的方程;

(2) 设椭圆的左顶点为A,记直线APAQ的斜率分别为k1k2.①若m0,求k1k2的值;②若k1k2=-,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为

1)求证:数列是等比数列;

2)若,是否存在q的某些取值,使数列中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.

3)若,是否存在,使数列中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案