精英家教网 > 高中数学 > 题目详情
6.过椭圆$\frac{x^2}{2}+{y^2}=1$的右焦点的直线交椭圆于A,B两点,则弦AB的最小值为$\sqrt{2}$.

分析 由于直线l过右焦点,则当l的斜率不存在时,AB即为通径长,当斜率存在时,设直线l:y=k(x-1),联立椭圆方程,求出交点,运用两点距离,再化简整理,求出AB的范围,即可得到最小值.

解答 解:椭圆$\frac{x^2}{2}+{y^2}=1$,则a=$\sqrt{2}$,b=1,c=1,
由于直线l过右焦点(1,0),则当l的斜率不存在时,
令x=1,则y=±$\frac{\sqrt{2}}{2}$,可得|AB|=$\sqrt{2}$;
当斜率存在时,设直线l:y=k(x-1),
代入椭圆方程得,(1+2k2)x2-4k2x+2k2-2=0,
即有x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,
即有|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4{k}^{2}}{1+2{k}^{2}})^{2}-\frac{8({k}^{2}-1)}{1+2{k}^{2}}}$
=$\sqrt{2}$•(1+$\frac{1}{1+2{k}^{2}}$)>$\sqrt{2}$.
则最小值为$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查椭圆方程和性质,考查直线方程和椭圆方程联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若等差数列的第一、二、三项依次是$\frac{1}{x+1}$、$\frac{5}{6x}$、$\frac{1}{x}$则数列的公差d是(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆O:x2+y2=a2的两条切线,记切点分别为A,B,双曲线的一条渐近线与圆O在第一象限的交点为C,若∠ACB=60°,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱锥P-ABC中,PB⊥地面ABC,∠BCA=90°,E,M分别为PC,AB的中点,点F在PA上,且AF=2FP.
(1)求证:AC⊥平面PBC;
(2)求证:CM∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设 P点在圆x2+(y-2)2=1上移动,点Q在椭圆$\frac{x^2}{9}+{y^2}=1$上移动,则|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,且PA=AD=1,AB=$\sqrt{2}$,点E,F分别为AB、PC中点.
(1)求证:EF⊥PD;
(2)求点E到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,则如图(2)的图象对应的函数可能是五个式子中的(  )
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在一次射击训练中,某战士连续射击了两次.设命题p是“第一次射击击中目标”,q是“第二次射击击中目标”.则命题“两次都没有击中目标”用p,q及逻辑联结词可以表示为¬p∧¬q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)满足f(x+2)=f(x)和f(-x)=-f(x),且当x∈(0,1)时,f(x)=3x-1,则f($\frac{2015}{2}$)=(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.-$\sqrt{3}-1$D.-$\sqrt{3}+$

查看答案和解析>>

同步练习册答案