【题目】如图,在五面体中,面是直角梯形,,,面是菱形,,,.
(I)证明:;
(I)已知点在线段上,且,若二面角的大小为,求实数的值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.
(1)求的方程;
(2)设点在曲线上,轴上一点(在点右侧)满足,若平行于的直线与曲线相切于点,试判断直线是否过点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的420/0来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷
按造林方式分 | ||||||
地区 | 造林总面积 | 人工造林 | 飞播造林 | 新封山育林 | 退化林修复 | 人工更新 |
内蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重庆 | 226333 | 100600 | 62400 | 63333 | ||
陕西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肃 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
宁夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(Ⅰ)请根据上述数据,分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;
(Ⅱ)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?
(Ⅲ)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一个均匀的正方体骰子抛掷两次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,设直线:,直线:.
(1)求直线和直线没有交点的概率;
(2)求直线和直线的交点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解高二学生学习效果,从高二第一学期期中考试成绩中随机抽取了25名学生的数学成绩(单位:分),发现这25名学生成绩均在90~150分之间,于是按,,…,分成6组,制成频率分布直方图,如图所示:
(1)求的值;
(2)估计这25名学生数学成绩的平均数;
(3)为进一步了解数学优等生的情况,该学校准备从分数在内的同学中随机选出2名同学作为代表进行座谈,求这两名同学分数在不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆过点、.
(1)求椭圆的方程;
(2)、为椭圆的左、右焦点,直线过与椭圆交于、两点,求△面积的最大值;
(3)求动点的轨迹方程,使得过点存在两条互相垂直的直线、,且都与椭圆只有一个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体中,,,,点分别在上,
(1)求直线与所成角的余弦值;
(2)过点的平面与此长方体的表面相交,交线围成一个正方形,求平面把该长方体分成的两部分体积的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的个数是_________.
(1)命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则”.
(2)命题“,”的否定“,”.
(3)若为假命题,则,均为假命题.
(4)“”是“直线:与直线:平行”的充要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com