(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点的直线交椭圆于两点,交直线于点,且,,
求证:为定值,并计算出该定值.
科目:高中数学 来源: 题型:解答题
(本题满分13分)
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
. (本题满分15分)已知点,为一个动点,且直线的斜率之积为
(I)求动点的轨迹的方程;
(II)设,过点的直线交于两点,的面积记为S,若对满足条件的任意直线,不等式的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)
如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,
点(,)在椭圆C上,直线l为椭圆C的左准线.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.
是否存在点P,使得△F1PQ为等腰三角形?
若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于、两点.
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com