精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求满足的取值;

(2)若函数是定义在上的奇函数

①存在,不等式有解,求的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

【答案】126

【解析】试题分析:(1)根据,可将方程转化为一元二次方程: ,再根据指数函数范围可得,解得2先根据函数奇偶性确定值: ,再利用单调性定义确定其单调性:在R上递减.最后根据单调性转化不等式时有解,根据判别式大于零可得的取值范围先求函数,则,因此不等式可转化为一元二次不等式,并将其变量分离得: 的最小值,其中,利用基本不等式求最值得

试题解析:(1) 由题意, ,化简得

解得

所以

2) 因为是奇函数,所以,所以

化简并变形得:

要使上式对任意的成立,则

解得: ,因为的定义域是,所以舍去

所以, 所以

对任意有:

因为,所以,所以

因此R上递减.

因为,所以

时有解

所以,解得:

所以的取值范围为

因为,所以

所以

不等式恒成立,

即: 恒成立

,则时恒成立

时, ,所以上单调递减

时, ,所以上单调递增

所以,所以

所以,实数m的最大值为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数已知曲线在原点处的切线相同.

(1)求的单调区间

(2)恒成立的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆)的圆心为点直线

(1)若求直线被圆所截得弦长的最大值

(2)若直线是圆心下方的切线上变化时的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点.

(1)若直线与圆相切,求直线的方程;

(2)若直线与圆交于 两点,求使得面积最大的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量单位:千套与销售价格单位:元/套满足的关系式为常数,其中成反比,的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.

1 的表达式;

2 假设网校的员工工资,办公等所有开销折合为每套题3只考虑销售出的套数,试确定销售价格的值,使网校每日销售套题所获得的利润最大保留1位小数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.

(1)若直线和圆总有两个不同的公共点,求k的取值集合

(2)求当k取何值时,直线被圆截得的弦最短,并求这最短弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次“知识竞赛”活动中,有四道题,其中为难度相同的容易题, 为中档题, 为较难题,现甲、乙两位同学均需从四道题目中随机抽取一题作答.

(1)求甲、乙两位同学所选的题目难度相同的概率;

(2)求甲所选题目的难度大于乙所选题目的难度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=+(a25a-6)i(a∈R).试求实数a分别为什么值时,z分别为(1)实数?(2)虚数?(3)纯虚数?

查看答案和解析>>

同步练习册答案