精英家教网 > 高中数学 > 题目详情

已知f{f[f(-3)]}的值等于

[  ]

A.0

B.

C.

D.9

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f'(x)是f(x)的导数,记f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),给出下列四个结论:
①若f(x)=xn,则f(5)(1)=120;
②若f(x)=cosx,则f(4)(x)=f(x);
③若f(x)=ex,则f(n)(x)=f(x)(n∈N+);
④设f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定义域上的可导函数,h(x)=f(x)•g(x),则h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
则结论正确的是
①②③
①②③
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•中山一模)已知函数f(x)=
13
x3-ax+b
,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3(x>0)
(3-a)x-a(x≤0)
,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
f(x1)+f(x)2
2
<f(
x1+x2
2
);  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有
(2)(4)
(2)(4)
(只填相应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x)是定义在R上的奇函数,若f(x)在区间[1,a](a>2)上单调递增,且f (x)>0,则以下不等式不一定成立的是(  )

查看答案和解析>>

同步练习册答案