精英家教网 > 高中数学 > 题目详情

【题目】如图所示,茎叶图记录了甲、乙两组各4名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中以X表示。

(1)如果x=8,求乙组同学植树棵数的平均数和方差;

(2)如果x=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列。

【答案】(1)平均数,方差 ;(2)见解析.

【解析】

1)当x8时,利用茎叶图能求出乙组同学植树棵数的平均数和方差.

2)当x9时,由茎叶图可知,甲组同学的植树棵树是:991111;乙组同学的植树棵数是:98910.这两名同学植树总棵数Y的可能取值为1718192021,分别求出相应的概率,由此能求出这两名同学的植树总棵数Y的分布列.

1)当x=8时,由茎叶图可知,乙组同学的植树棵数是88910

所以平均数为

方差为

2)当x=9时,由茎叶图可知,甲组同学的植树棵数是991111;乙组同学的植树棵数是98910

分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为1718192021

事件“Y=17”等价于甲组选出的同学植树9棵,乙组选出的同学植树8

所以该事件有2种可能的结果,因此PY=17==

同理可得PY=18=PY=19=

PY=20=PY=21=

所以随机变量Y的分布列为

Y

17

18

19

20

21

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDAB=AA1=

)证明:平面A1BD∥平面CD1B1

)求三棱柱ABD﹣A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.

写出甲、乙二人抽到的牌的所有情况;

甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则乙胜,你认为此约定是否公平?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象为C,则下列结论中正确的是(

A.图象C关于直线对称

B.图象C关于点对称

C.函数在区间内是增函数

D.把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到图象C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)写出下列两组诱导公式:

①关于的诱导公式;

②关于的诱导公式.

(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,关于的方程,给出下列四个命题,其中假命题的个数是(

①存在实数,使得方程恰有个不同的实根;

②存在实数,使得方程恰有个不同的实根;

③存在实数,使得方程恰有个不同的实根;

④存在实数,使得方程恰有个不同的实根.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示

1)求的解析式;

2)求的单调增区间,并指出的最大值及取到最大值时的集合;

3)把的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.

查看答案和解析>>

同步练习册答案