分析 (1)由题意可得:an=2Sn-1+1(n≥2),所以an+1-an=2an,即an+1=3an(n≥2),又因为a2=3a1,故{an}是等比数列,进而得到答案.
(2)根据题意可得b2=5,故可设b1=5-d,b3=5+d,所以结合题意可得(5-d+1)(5+d+9)=(5+3)2,进而求出公差得到等差数列的前n项和为Tn;
(3)求出数列{an•bn}的通项,运用错位相减法,结合等比数列的求和公式,可得所求前n项和.
解答 解:(1)因为an+1=2Sn+1,…①
所以an=2Sn-1+1(n≥2),…②
所以①②两式相减得an+1-an=2an,即an+1=3an(n≥2),
又因为a2=2S1+1=3,
所以a2=3a1,
故{an}是首项为1,公比为3的等比数列
∴an=3n-1.
(2)设{bn}的公差为d,
由T3=15得,可得b1+b2+b3=15,可得b2=5,
故可设b1=5-d,b3=5+d,
又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列,
所以可得(5-d+1)(5+d+9)=(5+3)2,
解得d1=2,d2=-10,
∵等差数列{bn}的各项为正,
∴d>0,∴d=2,b1=3,
∴Tn=3n+$\frac{1}{2}$n(n-1)•2=n2+2n;
(3)an•bn=(2n+1)•3n-1.
前n项和Rn=3•1+5•3+7•32+…+(2n+1)•3n-1,
3Rn=3•3+5•32+7•33+…+(2n+1)•3n.
两式相减可得,-2Rn=3+2(3+32+…+3n-1)-(2n+1)•3n
=3+2•$\frac{3(1-{3}^{n-1})}{1-3}$-(2n+1)•3n.
化简可得前n项和为Rn=n•3n.
点评 本题主要考查求数列通项公式和求和的方法,以及等比数列与等差数列的有关性质与求和,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2t}{1+{t}^{2}}$ | B. | $\frac{2t}{1-{t}^{2}}$ | C. | $\frac{\sqrt{1+{t}^{2}}}{1+{t}^{2}}$ | D. | $\frac{1-{t}^{2}}{1+{t}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (-∞,-2) | C. | (-2,0) | D. | (-∞,-2)∪(0,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com