精英家教网 > 高中数学 > 题目详情
椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。
(Ⅰ)   (Ⅱ)  (Ⅲ)
(Ⅰ)设,过且垂直于轴的直线与椭圆相交,则其中的一个交点坐标为,由题意可得解得
所以椭圆的方程为
(Ⅱ)由(Ⅰ)知
由椭圆定义得
因为平分
所以

所以
另解:由题意可知:=,=,
其中,将向量坐标代入并化简得
,因为
所以,而,所以.
(Ⅲ)因为与椭圆有且只有一个公共点,则点为切点,设
.
联立得

所以

另解:由题意可知,为椭圆的在点处的切线,由导数法可求得,切线方程
所以,而,代入中得
为定值.
【考点定位】本题通过椭圆的离心率、焦点、弦长、定义等基本知识来考查运算能力、推理论证能力。第一问较为简单,通过三者的固有关系确定椭圆方程为.第二问处理方式很多,可利用角平分线性质定理寻找线段间的比例关系、可利用点到直线的距离相等来确定的取值范围,但要注意直线斜率不存在的情形的说明.第三问中的直线的方程设法很多,也是决定运算量大小的关键,如果设为,则会出现,其运算强度较大,而设为可通过得到关系式,大大简化了运算.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)右顶点到右焦点的距离为,短轴长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆分别交于两点,若线段的长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A,B是椭圆的两个顶点, ,直线AB的斜率为.求椭圆的方程;(2)设直线平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:的面积等于的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆是长轴的左、右端点,动点满足,联结,交椭圆于点

(1)当时,设,求的值;
(2)若为常数,探究满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

同步练习册答案