【题目】如图,在三陵锥中,为等腰直角三角形,,为正三角形,为的中点.
(1)证明:平面平面;
(2)若二面角的平面角为锐角,且棱锥的体积为,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)根据等腰三角形三线合一,可证明线线垂直,再根据线面垂直判定定理,即可证明;
(2)根据题意,点在平面内的射影在射线上,再根据锥体体积公式可知,由线面垂直的判定定理,可证平面,则建系:以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,利用空间向量法,求线面角.
(1)
证明:∵,为中点,∴,
又为等边三角形,,∴,
,∴平面,
平面,∴平面平面;
(2)由(1)知点在平面内的射影在直线上,又二面角的平面角为锐角,∴在射线上,,,∴,
又,∴,即为中点,取中点,连接,则,
∴平面,∴两两互相垂直,
以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,
则
设平面的法向量为
由得
令,得平面的一个法向量为,
又,设与平面所成角为,
则,
∴直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立.
(1)求该学生考上大学的概率.
(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X,求X的概率分布及X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:
考试情况 | 男学员 | 女学员 |
第1次考科目二人数 | 1200 | 800 |
第1次通过科目二人数 | 960 | 600 |
第1次未通过科目二人数 | 240 | 200 |
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议(简称两会)将分别于年月日和月日在北京开幕.全国两会召开前夕,某网站推出两会热点大型调查,调查数据表明,网约车安全问题是百姓最为关心的热点之一,参与调查者中关注此问题的约占.现从参与者中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示:
(Ⅰ)现在要从年龄较小的第,组中用分层抽样的方法抽取人,再从这人中随机抽取人赠送礼品,求抽取的人中至少有人年龄在第组的概率;
(Ⅱ)把年龄在第,,组的人称为青少年组,年龄在第,组的人称为中老年组,若选出的人中不关注网约车安全问题的人中老年人有人,问是否有的把握认为是否关注网约车安全问题与年龄有关?附:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题中真命题的个数是( )
(1)若是奇函数,则的图像关于轴对称;
(2)若,则;
(3)若函数对任意满足,则8是函数的一个周期;
(4)命题“存在,”的否定是“任意,”;
(5)已知函数,若,则.
A.2B.3C.4D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com