精英家教网 > 高中数学 > 题目详情

【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

参考公式:
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2﹣1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大? (销售一辆该型号汽车的利润=销售价格﹣收购价格)

【答案】
(1)解:由已知:

所求线性回归直线方程为


(2)解:L(x)=y﹣ω=﹣1.45x+18.7﹣(0.03x2﹣1.81x+16.2)

=﹣0.03x2+0.36x+2.5=﹣0.03(x﹣6)2+3.58(0<x≤10)

∵0<x≤10

∴当x=6时,L(x)max=3.58(万元)

所以预测x=6时,销售一辆该型号汽车所获得的利润L(x)最大


【解析】(1)计算平均数,分别求出 的值,求出回归方程即可;(2)求出方程L(x),根据二次函数的性质求出函数的最大值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知正方体ABCDA1B1C1D1的棱长为a , 过点B1B1EBD1于点E , 求AE两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x20的均值和方差分别为1和8,若yi=2xi+3(i=1,2,…,20),则y1 , y2 , …,y20的均值和方差分别是(
A.5,32
B.5,19
C.1,32
D.4,35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数m≠0,n≥2且n∈N,二项式(1+mx)n的展开式中,只有第6项的二项式系数最大,第三项系数是第二项系数的9倍.
(1)求m、n的值;
(2)若记(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n , 求a0﹣a1+a2﹣a3+…+(﹣1)nan除以6的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 点(an , Sn)(n∈N*)都在函数f(x)= 的图象上.
(1)求数列{an}的通项公式;
(2)若bn=an3n , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为得到函数y=sin(2x﹣ )的图象,只需将函数y=sin2x的图象(
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
(1)求a的值,并求曲线y=f(x)在点(2,f(2))处的切线方程y=g(x);
(2)设h(x)=mf′(x)+g(x)+1,若对任意的x∈[2,4],h(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,且bcosA= asinB.
(1)求角A的大小;
(2)若a=1,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案