精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=x3上点P(1,1),则在点P的切线方程为
3x-y-2=0
3x-y-2=0
分析:根据导数公式算出f(x)的导数,从而得到曲线f(x)=x3在点P(1,1)处切线的斜率k=3,再根据直线方程的点斜式列式,化简得到曲线在点P处切线的一般式方程,即得本题答案.
解答:解:函数f(x)=x3的导数为f'(x)=3x2
∴当x=1时,f'(1)=3,即曲线f(x)=x3在点P(1,1)处的切线斜率等于3
由此可得,曲线在点P处的切线方程为:y-1=3(x-1),化简得3x-y-2=0
故答案为:3x-y-2=0
点评:本题给出曲线y=x3,求它在点P(1,1)处的切线方程,着重考查了导数运算公式、导数的几何意义和直线方程及其化简等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
x-1
在点A(2,1)处的切线为直线l
(1)求切线l的方程;
(2)求切线l,x轴及曲线所围成的封闭图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3+bx2+cx在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x=0.
(Ⅰ)求实数b,c的值;
(Ⅱ)若函数y=f(x),x∈[-
12
,3]
的图象与直线y=m恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案