精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.
(Ⅰ)若k=1,且|AB|= ,求实数a的值;
(Ⅱ)若 =2 ,求△AOB面积的最大值,及此时椭圆的方程.

【答案】解:设A(x1,y1),B(x2,y2),

(Ⅰ)由 得4x2+2x+1﹣a=0,

则x1+x2= ,x1x2=

则|AB|= = ,解得a=2.

(Ⅱ)由 ,得(3+k2)x2+2kx+1﹣a=0,

则x1+x2=﹣ ,x1x2=

=2 得(﹣x1,1﹣y1)=2(x2,y2﹣1),

解得x1=﹣2x2,代入上式得:

x1+x2=﹣x2=﹣ ,则x2=

= =

当且仅当k2=3时取等号,此时x2= ,x1x2=﹣2x22=﹣2×

又x1x2= =

=﹣ ,解得a=5.

所以,△AOB面积的最大值为 ,此时椭圆的方程为3x2+y2=5


【解析】(1)本小题的关键是线段AB长的表示,求得过程为;(2)本题关键在于三角形AOB面积的表示,求得过程为:S△AOB=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某射击运动员每次击中目标的概率都是0.7.现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中2次的概率为( )

A. 0.8 B. 0.85 C. 0.9 D. 0.95

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题中:
①双曲线 与椭圆 有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若 则动点P的轨迹为椭圆.其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内有一长度为2的线段AB与一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体服装店经营某种服装,在某周内获得的纯利润y(单位:元)与该周每天销售这种服装的件数x之间的一组数据关系如下表:

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91

(1)求纯利润y与每天销售件数x之间的回归方程;

(2)若该周内某天销售服装20件,估计可获得纯利润多少元?

已知:=280,xiyi=3 487,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1 , l2分别过点A(3 ,2),B( ,6),它们分别绕点A,B旋转,但始终保持l1⊥l2 . 若l1与l2的交点为P,坐标原点为O,则线段OP长度的取值范围是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三点A(1,2),B(﹣3,0),C(3,﹣2).
(1)求证△ABC为等腰直角三角形;
(2)若直线3x﹣y=0上存在一点P,使得△PAC面积与△PAB面积相等,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分条件,求m的取值范围;
(2)若p是q的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

同步练习册答案