精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调性;

(2)记函数的导函数,当时,证明:.

【答案】(1)当时,上单调递减;当时,上单调递增;在上单调递减;(2)证明见解析.

【解析】分析:(1)先求导,再对m分类讨论,求函数f(x)的单调性.(2)先把问题等价转化,,再构造函数设函数即得证.

详解:(1)的定义域为

①当时,

②当时,令,得,令,得

综上所述:当时,上单调递减;

时,上单调递增;在上单调递减.

(2)当时,

设函数,则,记,

,当变化时,的变化情况如下表:

-

0

+

单调递减

极小值

单调递增

由上表可知

,知,所以,所以,即

所以内为单调递增函数,所以当时,

当且时,

所以当且时,总有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·山东) 如图,三棱台-中,分别为,的中点.

(1)求证:平面
(2)若,,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≥2,不等式logax+loga[(a+1)ak-1-x]≥2k-1的解集为A,其中a∈N*,k∈N.

(1)A.

(2)f(k)表示A中自然数个数,求和Sn=f(1)+f(2)+…+f(n).

(3)a=2,比较Snn2+n的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的偶函数,且满足,若当时,,则函数在区间上零点的个数为 ( )

A. 2018 B. 2019 C. 4036 D. 4037

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若 =0,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

同步练习册答案