精英家教网 > 高中数学 > 题目详情
19.在用反证法证明命题“已知a,b,c∈(0,2),求证a(2-b),b(2-c),c(2-a)不可能都大于1”时,反证假设时正确的是(  )
A.假设a(2-b),b(2-c),c(2-a)都小于1B.假设a(2-b),b(2-c),c(2-a)都大于1
C.假设a(2-b),b(2-c),c(2-a)都不大于1D.以上都不对

分析 用反证法证明数学命题时,应先假设结论的否定成立

解答 解:“已知a,b,c∈(0,2),求证a(2-b),b(2-c),c(2-a)不可能都大于1””的否定为“a(2-b),b(2-c),c(2-a)都大于1”,
由用反证法证明数学命题的方法可得,应假设“a(2-b),b(2-c),c(2-a)都大于1”,
故选:B.

点评 本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=cosx(\sqrt{3}sinx+{cos^3}x)+sinx(\sqrt{3}cosx-{sin^3}x)$
(1)求f(x)的单调递增区间;
(2)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,若a2+c2=ac+b2,f(A)=0,b$+c=\sqrt{2}+\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P(tanα,cosα)在第三象限,则角α的终边在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.极坐标曲线C的极坐标方程为ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+7=0.设P(x,y)是曲线C上的动点,求t=(x+1)(y+1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列框图中是流程图的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将y=sin(2x-$\frac{π}{6}$)图象向右平移$\frac{π}{12}$个单位,所得函数图象的一条对称轴的方程是(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=-$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b,c∈R,且abc=1,则(2+a)(2+b)(2+c)的最小值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x+1)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,(其中n∈N*).
(1)求a0及sn=a1+a2+…+an
(2)试比较sn与(n-2)•2n+2n2的大小,并用数学归纳法给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一半径为6米的水轮如图,水轮圆心O距离水面3米,已知水轮每分钟转动4圈,水轮上点P从水中浮现时开始到其第一次达到最高点的用时为5秒.

查看答案和解析>>

同步练习册答案