精英家教网 > 高中数学 > 题目详情
数列对任意n∈N*满足,且,则等于
[     ]
A.24
B.27
C.30
D.32
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•重庆一模)设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,2
Sn
是an+2 和an的等比中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m 的一切正整数n,不等式2Sn-4200>
an2
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,当数列{xn}的周期为3时,则{xn}的前2013项的和S2013=
1342
1342

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+x及两个正整数数列{an},{bn}若a1=3,an+1=f'(an)对任意n∈N*恒成立,且b1=1,b2=λ,且当n≥2时,有
b
2
n
-1<bn+1bn-1
b
2
n
+1
;又数列{cn}满足:2(λbn+cn-1)=2nλbn+an-1.
(1)求数列{an}及{bn}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)证明存在k∈N*,使得
Cn+1
cn
Ck+1
ck
对任意n∈N*均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•浦东新区一模)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn-cn-2=3•(-
1
2
)n-1(n∈N*且n≥3)
,其中c1=1,c2=-
3
2
;f(n)=bn-|cn|,当-16≤a≤-14时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案