【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图(如图),解答下列问题:
分组 | 频数 | 频率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | ||
合计 |
(1)填充频率分布表中的空格;
(2)不具体计算频率/组距,补全频率分布直方图.
【答案】(1)12,0.24,50,1; (2)见解析.
【解析】
试题分析:(1)由题根据频率分布表,知各组频率和为1,可推出[90,100],的频率并进而得出频数。再补全频率分布直方图。特别注意:纵坐标为频率除以组距。
(2)由(1)根据频率分布直方图算平均值的算法为,取各组的组中值乘以它的频率,再分别相加可得。
试题解析:(Ⅰ)抽取学生总数=
50-(4+8+10+16)=12,
所以,在区间[90,100]的频数为12,频率为0.24;
合计的频数为50,频率为1.00.
补全的频率分布直方图
(Ⅱ)平均值为55×0.08+65×0.16+75×0.20+85×0.32+95×0.24=79.8.
所以,学生成绩的平均值为79.8.
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=2, (n∈N*).
(1)证明数列 是等比数列,并求数列{an}的通项公式;
(2)设 ,若数列{bn}的前n项和是Tn , 求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.
(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,平面平面, , , 为的中点, 为的中点, 在棱上.
()当为的中点时,证明: 平面.
()求证: 平面.
()是否存在点使得平面?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AB=1,BC=,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面AED;
(2)求二面角A﹣A1D﹣E的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线关于轴对称,它的顶点在坐标原点,点在抛物线上.
(1)写出该抛物线的标准方程及其准线方程;
(2)过点作两条倾斜角互补的直线与抛物线分别交于不同的两点,求证:直线的斜率是一个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com