精英家教网 > 高中数学 > 题目详情
4.集合A={(x,y)|y=|x|},集合B={(x,y)|y>0,x∈R},则下列说法正确的是(  )
A.A⊆BB.B⊆A
C.A∩B=∅D.集合A、B间没有包含关系

分析 可以看出集合A表示直线y=x和y=-x在x轴上方的部分,并且包含原点,而集合B表示x轴上面的点形成的集合,不包含原点,这便可得出集合A,B没有包含关系.

解答 解:A={(x,y)|y≥0,x∈R,且y=|x|};
∴(0,0)∈A,而(0,0)∉B;
(0,1)∈B,而(0,1)∉A;
∴集合A,B间没有包含关系.
故选:D.

点评 考查描述法表示集合,元素与集合的关系,用有序数对表示点,以及两集合的包含关系的确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC为锐角三角形,AB≠AC,以BC为直径的圆分别交边AB和AC于点M和N,记BC得中点为O,∠BAC的平分线和∠MON的平分线交于点R.证明:△BMR的外接圆和△CNR的外接圆有一个交点在BC上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数y=x2-2ax-a2-1在[0,2]上的最小值g(a)和最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为($\frac{{a}^{2}}{2}$,$\frac{b}{2}$),且a2<$\frac{b}{2}$,则f(x)•g(x)>0的解集为(  )
A.(-$\frac{b}{2}$,-a2)∪(a2,$\frac{b}{2}$)B.(-$\frac{b}{2}$,a2)∪(-a2,$\frac{b}{2}$)C.(-$\frac{b}{2}$,-a2)∪(a2,b)D.(-b,-a2)∪(a2,$\frac{b}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)是奇函数,且在(0,+∞)内是单调递增函数,若f(3)=0,则不等式xf(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD,底面ABCD为正方形,平面PAD⊥平面ABCD,PA=$\sqrt{3}$,PD=1,AD=2,PH⊥AD交AD于H.
(1)若PA,PC的中点分别为M,N,求证:MN⊥PH.
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知圆的两条弦AB,CD,延长AB,CD交于圆外一点E,过E作AD的平行线交CB的延长线于F,过点F作圆的切线FG,G为切点.求证:
(I)△EFC∽△BFE;
(Ⅱ)FG=FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{2}$cos$({x-\frac{π}{12}})$,x∈R.
(Ⅰ)求$f({-\frac{π}{6}})$的值;
(Ⅱ) 在平面直角坐标系中,以Ox为始边作角θ,它的终边与单位圆相交于点P($\frac{3}{5}$,-$\frac{4}{5}$),求$f({2θ+\frac{π}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}(a>b>0)$直线$y=x+\sqrt{6}$与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1,F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2.已知A为椭圆C上的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足${k_1}+{k_2}=-\frac{1}{2}$,直线MN的方程y=2x-2.

查看答案和解析>>

同步练习册答案