精英家教网 > 高中数学 > 题目详情

【题目】年俄罗斯索契冬奥会某项目的选拔比赛中,两个代表队进行对抗赛,每队三名队员,队队员是队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得分,负队得分,设队、队最后所得总分分别为.

对阵队员

队队员胜

队队员负

1)求队得分为分的概率;

2)求的分布列;并用统计学的知识说明哪个队实力较强.

【答案】1;(2)分布列见解析,队比队实力较强.

【解析】

1队得分为分包括队员胜且负,队员胜且队员负,队员胜且负,利用独立事件的概率乘法公式即可计算出所求事件的概率;

2)求出随机变量可能的取值,求出各个取值对应的概率,得到分布列,求出期望,利用期望的性质求出随机变量的数学期望,并比较两个期望的大小,得到结论.

1)设队得分为分的事件为,则

2)随机变量的可能取值为

所以,随机变量的分布列如下表所示:

因此,随机变量的数学期望为

则随机变量的数学期望为

所以,,故队比队实力较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的圆心坐标为(10),半径为1.

1)求圆C的极坐标方程;

2)若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.已知直线l的参数方程为t为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生参加4门学科的学业水平测试,每门得等级的概率都是,该学生各学科等级成绩彼此独立.规定:有一门学科获等级加1分,有两门学科获等级加2分,有三门学科获等级加3分,四门学科全获等级则加5分,记表示该生的加分数, 表示该生获等级的学科门数与未获等级学科门数的差的绝对值.

(1)求的数学期望;

(2)求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,是棱的中点.

1)求证:平面

2)若,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,动点满足直线的斜率之积为.记点的轨迹为曲线.

(1)求的方程,并说明是什么曲线;

(2)是曲线上的动点,且直线过点,问在轴上是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会发展对环保的要求,越来越多的燃油汽车被电动汽车取代,为了了解某品牌的电动汽车的节能情况,对某一辆电动汽车“行车数据”的两次记录如下表:

记录时间

累计里程

(单位:公里)

平均耗电量(单位:公里)

剩余续航里程

(单位:公里)

202011

5000

0.125

380

202012

5100

0.126

246

(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,

下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是(

A.等于B.之间C.等于D.大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点的横、纵坐标分别为第名工人上午的工作时间和加工的零件数,点的横、纵坐标分别为第名工人下午的工作时间和加工的零件数,.为第名工人在这一天中加工的零件总数,记为第名工人在这一天中平均加工的零件数,则中的最大值与中的最大值分别是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小赵和小王约定在早上7:007:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

查看答案和解析>>

同步练习册答案