【题目】在年俄罗斯索契冬奥会某项目的选拔比赛中,、两个代表队进行对抗赛,每队三名队员,队队员是、、,队队员是、、,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式出场进行三场比赛,每场胜队得分,负队得分,设队、队最后所得总分分别为、且.
对阵队员 | 队队员胜 | 队队员负 |
(1)求队得分为分的概率;
(2)求的分布列;并用统计学的知识说明哪个队实力较强.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,圆C的圆心坐标为(1,0),半径为1.
(1)求圆C的极坐标方程;
(2)若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.已知直线l的参数方程为(t为参数),试判断直线l与圆C的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生参加4门学科的学业水平测试,每门得等级的概率都是,该学生各学科等级成绩彼此独立.规定:有一门学科获等级加1分,有两门学科获等级加2分,有三门学科获等级加3分,四门学科全获等级则加5分,记表示该生的加分数, 表示该生获等级的学科门数与未获等级学科门数的差的绝对值.
(1)求的数学期望;
(2)求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,,动点满足直线与的斜率之积为.记点的轨迹为曲线.
(1)求的方程,并说明是什么曲线;
(2)若,是曲线上的动点,且直线过点,问在轴上是否存在定点,使得?若存在,请求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会发展对环保的要求,越来越多的燃油汽车被电动汽车取代,为了了解某品牌的电动汽车的节能情况,对某一辆电动汽车“行车数据”的两次记录如下表:
记录时间 | 累计里程 (单位:公里) | 平均耗电量(单位:公里) | 剩余续航里程 (单位:公里) |
2020年1月1日 | 5000 | 0.125 | 380 |
2020年1月2日 | 5100 | 0.126 | 246 |
(注:累计里程指汽车从出厂开始累计行驶的路程,累计耗电量指汽车从出厂开始累计消耗的电量,)
下面对该车在两次记录时间段内行驶100公里的耗电量估计正确的是( )
A.等于B.到之间C.等于D.大于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点的横、纵坐标分别为第名工人上午的工作时间和加工的零件数,点的横、纵坐标分别为第名工人下午的工作时间和加工的零件数,.记为第名工人在这一天中加工的零件总数,记为第名工人在这一天中平均加工的零件数,则,,中的最大值与,,中的最大值分别是( )
A.,B.,
C.,D.,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com