精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)若不等式的解集为,求的取值范围;

(2)当时,解不等式

(3)若不等式的解集为,若,求的取值范围.

【答案】(1);(2).;(3).

【解析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为 分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.

试题解析:(1)①当时, ,不合题意;

②当时,

,即

,∴

(2)

①当时,解集为

②当时,

,∴解集为

③当时,

,所以,所以

∴解集为

(3)不等式的解集为

即对任意的,不等式恒成立,

恒成立,

因为恒成立,所以恒成立,

所以

因为,当且仅当时取等号,

所以,当且仅当时取等号,

所以当时,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

)求在未来4年中,至多1年的年入流量超过120的概率;

)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某校举行了爱国学,传诵经典”考试,从中随机抽取了100名考生的成绩得分为整数,满分100分进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

分组

频数

频率

5

35

25

15

100

值及随机抽取一考生恰为优秀生的概率

按成绩采用分层样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数

在第抽取的优秀生中指派2名学生担任负责人,至少一人的成绩的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc是两两不等的实数,则pa2b2c2qabbcca的大小关系是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200圆心角为的扇形广场内(如图所示),沿边界修建观光道路其中分别在线段两点间距离为定长

(1)当求观光道段的长度

(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置使观光道路总长度达到最长并求出总长度的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.

(1)求函数f(x)的单调增区间;

2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P为平行四边形ABCD所在平面外一点,MN分别为ABPC的中点,平面PAD∩平面PBC=l.

(1)判断BC与l的位置关系,并证明你的结论;

(2)判断MN与平面PAD的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,是棱上的一点,分别为的中点.

1求证:平面

2的中点时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案