精英家教网 > 高中数学 > 题目详情

已知二次函数满足条件.
(1)求
(2)求在区间上的最大值和最小值.

(1);(2)在区间上的最大值为,最小值为

解析试题分析:(1)先设,用待定系数法求出
(2)由(1)知函数开口向上,对称轴,结合单调性可求出函数在区间上的最大值和最小值.
(1)设二次函数表达式为:,由已知可得:


(2),则当时,
 
考点:解析式的求法、函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间和极值。
(2)若函数在[1,4]上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的定义域和极值;
(2)当时,试确定函数的零点个数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)设a>0,b>0,已知函数f(x)=
(1)当a≠b时,讨论函数f(x)的单调性;
(2)当x>0时,称f(x)为a、b关于x的加权平均数.
(1)判断f(1),f(),f()是否成等比数列,并证明f()≤f();
(2)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的值域;
(2)设,若存在,使得以为三边长的三角形不存在,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数的图象恒在轴上方,求实数的取值范围.

查看答案和解析>>

同步练习册答案