精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,ABCDEF分别为线段ADPA的中点.

求证:平面平面BEF

求证:平面PAC

【答案】(1)见解析;(2)见解析.

【解析】

推导出,从而平面PCD,进而BCDE是平行四边形,推导出平面PCD平面PCD,由此能证明平面平面BEF

连接CE,四边形ABCE为平行四边形,四边形ABCE是菱形,,由此能证明平面PAC

F分别为线段ADPA的中点,

平面PCD平面PCD

平面PCD

EAD的中点,

是平行四边形,

平面PCD平面PCD

平面PCD平面PCD

平面平面BEF

连接CE,四边形ABCE为平行四边形,

四边形ABCE是菱形,

平面ABCDABCD

平面PAC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是(
A.(0, ]
B.[ ]
C.[ ]∪{ }
D.[ )∪{ }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的零点个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数使得其中为自然对数的底数,则实数的取值范围是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5S15="225."

1)求数列{an}的通项an

2)设bn=+2n,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在其定义域内存在,使得成立,则称函数为“可分拆函数”.

(1)试判断函数是否为“可分拆函数”?并说明你的理由;

(2)设函数为“可分拆函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P与两个定点O(0,0),A(-3,0)距离之比为.

(1)求点P的轨迹C方程;

(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.
(1)求甲乙两人采用不同分期付款方式的概率;
(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.

查看答案和解析>>

同步练习册答案