精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=k(x﹣1)ex+x2 . (Ⅰ)当时k=﹣ ,求函数f(x)在点(1,1)处的切线方程;
(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;
(Ⅲ)当k≤﹣l时,求函数f(x)在[k,1]上的最小值m.

【答案】解:(Ⅰ)k=﹣ 时,f(x)=﹣ (x﹣1)ex+x2

∴f′(x)=x(2﹣ex1 ),∴f′(1)=1,f(1)=1,

∴函数f(x)在(1,1)处的切线方程为y=x,

(Ⅱ)f′(x)=kx(ex+ )<x2+(k+2)x,

即:kxex﹣x2﹣kx<0,

∵x<0,∴kex﹣x﹣k>0,

令h(x)=kex﹣x﹣k,

∴h′(x)=kex﹣1,

当k≤0时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,

当0<k≤1时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,

当k>1时,h(x)在(﹣∞,﹣lnk)递减,在(﹣lnk,0)递增,

∴h(﹣lnk)<h(0)=0,不合题意,

综上:k≤1.

(Ⅲ)f′(x)=kx(ex+ ),

令f′(x)=0,解得:x1=0,x2=ln(﹣ ),

令g(k)=ln(﹣ )﹣k,则g′(k)=﹣ ﹣1≤0,

g(k)在k=﹣1时取最小值g(﹣1)=1+ln2>0,

∴x2=ln(﹣ )>k,

当﹣2<k≤﹣1时,x2=ln(﹣ )>0,

f(x)的最小值为m=min{f(0),f(1)}=min{﹣k,1}=1,

当k=﹣2时,函数f(x)在区间[k,1]上递减,m=f(10=1,

当k<﹣2时,f(x)的最小值为m=min{f(x2 ),f(1)},

f(x2 )=﹣2[ln(﹣ )﹣1]+[ln(﹣ )]2= ﹣2x2+2>1,f(1)=1,

此时m=1,

综上:m=1.


【解析】(Ⅰ)k=﹣ 时,f(x)=﹣ (x﹣1)ex+x2,得f′(x)=x(2﹣ex1 ),从而求出函数f(x)在(1,1)处的切线方程;(Ⅱ)f′(x)=kx(ex+ )<x2+(k+2)x,即:kxex﹣x2﹣kx<0,令h(x)=kex﹣x﹣k,讨论当k≤0时,当0<k≤1时,当k>1时,从而综合得出k的范围;(Ⅲ)f′(x)=kx(ex+ ),令f′(x)=0,得:x1=0,x2=ln(﹣ ),令g(k)=ln(﹣ )﹣k,则g′(k)=﹣ ﹣1≤0,得g(k)在k=﹣1时取最小值g(﹣1)=1+ln2>0,讨论当﹣2<k≤﹣1时,当k=﹣2时,当k<﹣2时的情况,从而求出m的值.
【考点精析】通过灵活运用函数的最大(小)值与导数,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,PA⊥☉O所在的平面,AB是☉O的直径,C是☉O上的一点,AE⊥PB于E,AF⊥PC于F,给出下列结论:①BC⊥平面PAC;②AF⊥平面PCB;③EF⊥PB;④AE⊥平面PBC.其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是甲、乙两人在一次射击比赛中中靶的情况(击中靶中心的圆面为10靶中各数字表示该数字所在圆环被击中所得的环数)每人射击了6次.

甲射击的靶   乙射击的靶

(1)请用列表法将甲、乙两人的射击成绩统计出来;

(2)请你用学过的统计知识对甲、乙两人这次的射击情况进行比较.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=是定义在[-l,1]上的奇函数,且f()=

(1)确定函数f(x)的解析式;

(2)判断并用定义证明f(x)(-1,1)上的单调性;

(3)f(1-3m)+f(1+m)≥0,求实数m的所有可能的取值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中A>0,ω>0,0<φ)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).

(1)求f(x)的解析式;

(2)将函数f(x)的图象向右平移个单位后,再将所得图象上各点的横坐标缩小到原来的,纵坐标不变,得到yg(x)的图象,求函数yg(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex , 则(
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=﹣1为f(x)的极大值点
D.x=﹣1为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某公共汽车线路收支差额(票价总收人减去运营成本)与乘客量的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图分别改画成图②和图③,

(1)说明图①中点和点以及射线的实际意义;

(2)你认为图②和图③两个图象中,反映乘客意见的是_________,反映公交公司意见的是_________.

(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的大致函数关系图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ ,其中函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.
(1)若a= ,求函数f(x)的解析式;
(2)若f(x)≥g(x)在[1,+∞)上恒成立,求实数a的取值范围;
(3)证明:1+

查看答案和解析>>

同步练习册答案