精英家教网 > 高中数学 > 题目详情

【题目】洛萨·科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1,如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨猜想,目前谁也不能证明,更不能否定,如果对正整数按照上述规则实施变换(注:1可以多次出现)后的第九项为1,则的所有可能取值的集合为_________.

【答案】.

【解析】分析:利用地9项为1出发,按照规则,逆向逐项即可求出的所有可能的取值.

详解:如果正整数按照上述规则进行变换后的第9项为1,

则变换中的第项为

则变换中的第7项为

则变换中的第6项为1,也可能是8,

则变换中的第5项为2也可能是16,

当变换中的第5项为2时,变换中的第4项是4,变换中的第3项是18,变换中的第2项为216,

当变换中的第5项为16时,变换中的第4项是325,变换中的第3项是6410,变换中的第2项为203,

变换中第2项为2时,第1项为4,变换中第2项为16时,第1项为325,变换中第2项为3时,第1项为6,变换中第2项为20时,第1项为40,变换中第2项为21时,第1项为42,变换中第2项为128时,第1项为256,

所以的所有取值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}共有5项,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,是棱上一点.

1)求证:

2)若分别为的中点,求证://平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出的S的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:

失眠

不失眠

合计

晚上喝绿茶

16

40

56

晚上不喝绿茶

5

39

44

合计

21

79

100

由已知数据可以求得:,则根据下面临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的结论是( )

A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”

B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”

C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”

D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.若直线的参数方程为为参数),曲线的极坐标方程为.

(I)求直线的普通方程与曲线的直角坐标方程;

(II)设直线与曲线相交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过两点,且圆心在直线上.

(1)求圆C的方程;

(2)若直线经过点且与圆C相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①函数fx=2a2x-1-1的图象过定点(-1);

②已知函数fx)是定义在R上的奇函数,当x≥0时,fx=xx+1),若fa=-2则实数a=-12

③若loga1,则a的取值范围是(1);

④若对于任意xRfx=f4-x)成立,则fx)图象关于直线x=2对称;

⑤对于函数fx=lnx,其定义域内任意x1x2都满足f

其中所有正确命题的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,当时,,设函数,则的图象所有交点的横坐标之和为( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步练习册答案