精英家教网 > 高中数学 > 题目详情

设函数.

(1)若函数图像上的点到直线距离的最小值为,求的值;

(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数

“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

 

【答案】

(1)

(2)

(3)

【解析】

试题分析:解:(1)因为,得:    2分

则点到直线的距离为

                  4分

(2)法1:由题意可得不等式恰有三个整数解,

所以                                           6分

,由

函数的一个零点在区间内,

则另一个零点在区间内                              8分

所以                          10分

法2:恰有三个整数解,所以,即   6分

 

                                       8分

 

                                       10分

(3)设

可得

所以当

的图像在处有公共点              12分

存在分界线,方程为

,恒成立,

即化为恒成立

                                 14分

下面证明

可得

所以恒成立,

恒成立

 所求分界线为:                            16分

考点:导数的运用

点评:主要是考查了导数在研究函数中的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的单调递增区间;
(2)如果函f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x恒成立,则称f(x)为有界泛函.有下面四个函数:
①f(x)=1;   
②f(x)=x2;   
③f(x)=2xsinx;   
f(x)=
x
x2+x+2

其中属于有界泛函的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案