【题目】从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.
(1)求所选3人中女生人数ξ≤1的概率;
(2)求ξ的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆为圆上任意一点,过作圆的切线,分别交直线和于两点,连接,相交于点,若点的轨迹为曲线.
(1)设直线的斜率分别为,求的值,并求曲线的方程;
(2)记直线与曲线有两个不同的交点,与直线交于点,与直线交于点,求的面积与的面积的比值的最大值及取得最大值时的值.
(注:在点处的切线方程为)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计一次性饮酒4.8两诱发脑血管病的概率为0.04,一次性饮酒7.2两诱发脑血管病的概率为0.16.已知某公司职员一次性饮酒4.8两未诱发脑血管病,则他还能继续饮酒2.4两不诱发脑血管病的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小长方形的高之比为,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:
(1)样本量是多少?
(2)列出频率分布表.
(3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
(4)成绩落在哪个范围内的人数最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中, 平面, ,点分别为的中点,设直线与平面交于点.
(1)已知平面平面,求证: .
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】物联网(Internet of Things,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络. 其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景. 现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与成正比;若在距离车站9千米处建仓库,则和分别为2万元和7. 2万元. 这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=af1(x)+bf2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)函数f1(x)=x2﹣x,f2(x)=x2+x+1,h(x)=x2﹣x+1,h(x)是否为f1(x),f2(x)的生成函数?说明理由;
(2)设f1(x)=1﹣x,f2(x)=,当a=b=1时生成函数h(x),求h(x)的对称中心(不必证明);
(3)设f1(x)=x,(x≥2),取a=2,b>0,生成函数h(x),若函数h(x)的最小值是5,求实数b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com