精英家教网 > 高中数学 > 题目详情

【题目】从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.

(1)求所选3人中女生人数ξ≤1的概率;

(2)求ξ的分布列及数学期望.

【答案】(1);(2)见解析

【解析】

(1)先求得ξ=2的概率,再利用对立事件的概率公式得到结果.

(2)由题意知ξ服从超几何分布,随机变量ξ表示所选3人中女生的人数,ξ可能的取值为0,1,2,结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.

(1)由题意知P(ξ=2)= ,则“所选3人中女生人数ξ≤1”的概率为.

(2)由题意知ξ服从超几何分布,

随机变量ξ表示所选3人中女生的人数,ξ可能取的值为0,1,2.

∴ξ的分布列为

ζ

0

1

2

P

∴ξ的数学期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆为圆上任意一点,过作圆的切线,分别交直线两点,连接,相交于点,若点的轨迹为曲线.

(1)设直线的斜率分别为,求的值,并求曲线的方程;

(2)记直线与曲线有两个不同的交点,与直线交于点,与直线交于点,求的面积与的面积的比值的最大值及取得最大值时的值.

(注:在点处的切线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计一次性饮酒4.8两诱发脑血管病的概率为0.04,一次性饮酒7.2两诱发脑血管病的概率为0.16.已知某公司职员一次性饮酒4.8两未诱发脑血管病,则他还能继续饮酒2.4两不诱发脑血管病的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布情况,将样本分成5组,绘成频率分布直方图,图中从左到右各小长方形的高之比为,最右边一组频数是6,请结合直方图提供的信息,解答下列问题:

1)样本量是多少?

2)列出频率分布表.

3)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.

4)成绩落在哪个范围内的人数最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物联网(Internet of Things,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络. 其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景. 现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离(单位:千米,),其中成反比,每月库存货物费(单位:万元)与成正比;若在距离车站9千米处建仓库,则分别为2万元和7. 2万元. 这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f1x),f2x),hx),如果存在实数ab使得hx=af1x+bf2x),那么称hx)为f1x),f2x)的生成函数.

1)函数f1x=x2xf2x=x2+x+1hx=x2x+1hx)是否为f1x),f2x)的生成函数?说明理由;

2)设f1x=1xf2x=,当a=b=1时生成函数hx),求hx)的对称中心(不必证明);

3)设f1x=xx≥2),取a=2b0,生成函数hx),若函数hx)的最小值是5,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,为常数.

1)求的值;

2)判断函数上的单调性,并说明理由;

3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案