【题目】雷达图(Radar Chart),又可称为戴布拉图、蜘蛛网图(Spider Chart),原先是财务分析报表的一种,现可用于对研究对象的多维分析.图为甲、乙两人在五个方面的评价值的雷达图,则下列说法不正确的是( )
A.甲、乙两人在次要能力方面的表现基本相同
B.甲在沟通、服务、销售三个方面的表现优于乙
C.在培训与销售两个方面上,甲的综合表现优于乙
D.甲在这五个方面的综合表现优于乙
科目:高中数学 来源: 题型:
【题目】某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 |
温差 | 11 | 13 | 12 | 8 |
发芽数(颗) | 26 | 32 | 26 | 17 |
根据表中12月1日至12月3日的数据,求得线性回归方程中的,则求得的_____;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程_____(填“可靠”或“不可靠”).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数,).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,被截得的弦长为.
(1)求实数的值;
(2)设与交于点,,若点的坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆经过椭圆的左右焦点,与椭圆在第一象限的交点为,且, , 三点共线.
(1)求椭圆的方程;
(2)设与直线(为原点)平行的直线交椭圆于两点,当的面积取取最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线E的左、右焦点分别为F1,F2,P是双曲线E上的一点,且|PF2|=2|PF1|,若直线PF2与双曲线E的渐近线交于点M,且M为PF2的中点,则双曲线E的渐近线方程为( )
A.y=±B.y=±C.y=±2xD.y=±3x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|2x+4|+|x-3|.
(1)解关于x的不等式f(x)<8;
(2)对于正实数a,b,函数g(x)=f(x)-3a-4b只有一个零点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出如下四个命题:
①若“或”为假命题,则均为假命题;
②命题“若且,则”的否命题为“若且,则”;
③若是实数,则“”是“”的必要不充分条件;
④命题“若则”的逆否命题为真命题.
其中正确命题的个数是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
求证:(1)直线平面EFG;
(2)直线平面SDB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年,我国鲜切花产业得到了快速发展,相关部门制定了鲜切花产品行业等级标准,统一使用综合指标值进行衡量,如下表所示.某花卉生产基地准备购进一套新型的生产线,现进行设备试用,分别从新旧两条生产线加工的产品中选取30个样品进行等级评定,整理成如图所示的茎叶图.
综合指标 | |||
质量等级 | 三级 | 二级 | 一级 |
(Ⅰ)根据茎叶图比较两条生产线加工的产品的综合指标值的平均值及分散程度(直接给出结论即可);
(Ⅱ)若从等级为三级的样品中随机选取3个进行生产流程调查,其中来自新型生产线的样品个数为,求的分布列;
(Ⅲ)根据该花卉生产基地的生产记录,原有生产线加工的产品的单件平均利润为4元,产品的销售率(某等级产品的销量与产量的比值)及产品售价如下表:
三级花 | 二级花 | 一级花 | |
销售率 | |||
单件售价 | 12元 | 16元 | 20元 |
预计该新型生产线加工的鲜切花单件产品的成本为span>10元,日产量3000件.因为鲜切花产品的保鲜特点,未售出的产品统一按原售价的50%全部处理完.如果仅从单件产品利润的角度考虑,该生产基地是否需要引进该新型生产线?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com