精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-mlnx,h(x)=x2-x+a
(Ⅰ) 当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(Ⅱ) 当m=2时,若函数g(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.
分析:(I)由a=0,我们可以由f(x)≥h(x)在(1,+∞)上恒成立,得到-mlnx≥-x,即m≤
x
lnx
在(1,+∞)上恒成立,构造函数φ=
x
lnx
,求出函数的最小值,即可得到实数m的取值范围;
(Ⅱ) 当m=2时,我们易求出函数g(x)=f(x)-h(x)的解析式,由方程的根与对应函数零点的关系,易转化为x-2lnx=a,在[1,3]上恰有两个相异实根,利用导数分析函数的单调性,然后根据零点存在定理,构造关于a的不等式组,解不等式组即可得到答案.
解答:解:(I)由a=0,f(x)≥h(x)可得-mlnx≥-x,即m≤
x
lnx

φ=
x
lnx
,则f(x)≥h(x)在(1,+∞)上恒成立等价于m≤φ(x)min.(3分)
求得φ′(x)=
lnx-1
ln2x
(4分)
当x∈(1,e)时;φ′(x)<0;当x∈(e,+∞)时,φ′(x)>0(5分)
故φ(x)在x=e处取得极小值,也是最小值,
即φ(x)min=φ(e)=e,故m≤e.(6分)
(II)函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同的零点等价于方程x-2lnx=a,
在[1,3]上恰有两个相异实根.(7分)
令g(x)=x-2lnx,则g′(x)=1-
2
x
(8分)
当x∈[1,2)时,g′(x)<0,当x∈(2,3]时,g′(x)>0
g(x)在[1,2]上是单调递减函数,在(2,3]上是单调递增函数.
故g(x)min=g(2)=2-2ln2(10分)
又g(1)=1,g(3)=3-2ln3
∵g(1)>g(3),
∴只需g(2)<a≤g(3),(12分)
故a的取值范围是(2-2ln2,3-2ln3](13分)
点评:本题考查的知识点是利用导数研究函数的极值,函数的零点,其中(I)的关键是构造函数,将问题转化为函数恒成立问题,(II)的关键是利用导数分析函数的单调性后,进而构造关于a的不等式组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案