精英家教网 > 高中数学 > 题目详情
设动点P(x,y)(x≥0)到定点F的距离比到y轴的距离大.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
(1) y2=2x  (2) BD=2,即弦长BD为定值   (3)8

解:(1)由题意知,所求动点P(x,y)的轨迹为以F为焦点,直线l:x=-为准线的抛物线,其方程为y2=2x.
(2)是定值.解法如下:设圆心M,
半径r=,
圆的方程为+(y-a)2=a2+,
令x=0,得B(0,1+a),D(0,-1+a),
∴BD=2,即弦长BD为定值.
(3)设过F的直线GH的方程为y=k,G(x1,y1),H(x2,y2),
得k2x2-(k2+2)x+=0,
∴x1+x2=1+,x1x2=,
∴|GH|=·=2+,
同理得|RS|=2+2k2.
S四边形GRHS=(2+2k2)= 2≥8(当且仅当k=±1时取等号).
∴四边形GRHS面积的最小值为8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点分别是轴和轴上的动点,且,动点满足,设动点的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且,过M,N两点分别作曲线E的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且与y轴相交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设P是抛物线C1:x2=y上的动点,过点P作圆C2:x2+(y+3)2=1的两条切线,交直线l:y=-3于A、B两点.

(1)求圆C2的圆心M到抛物线C1准线的距离;
(2)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于(  )
(A)    (B)    (C)       (D)2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若已知点Q(4,0)和抛物线y=x2+2上一动点P(x,y),则y+|PQ|最小值为(  )
A.2+2 B.11  C.1+2  D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

顶点在原点,准线与轴垂直,且经过点的抛物线方程是(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案