精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,且满足).

(1)求数列的通项公式;

(2)是否存在实数,使得数列为等差数列?若存在,求出的值,若不存在,请说明理由.

【答案】(1);(2)答案见解析.

【解析】试题分析:

(1)由题意可得,据此有.).整理可得.数列是以2为首项,2为公比的等比数列.

(2)由(1)知,,必要条件探路,若为等差数列,则成等差数列,据此可得.经检验时,成等差数列,故的值为-2.

试题解析:

(1)由),

可知当时,.

又由).

可得

两式相减,得

,即.

所以数列是以2为首项,2为公比的等比数列

.

(2)由(1)知,

所以

为等差数列,

成等差数列,

即有

解得.

经检验时,成等差数列,

的值为-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为,(为参数.以原点为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为.

(1)写出直线的极坐标方程与曲线的直角坐标方程

(2)已知与直线平行的直线过点且与曲线交于两点试求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平行四边形中,分别为的中点,现把平行四边形1沿折起如图2所示,连接

(1)求证:

(2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)若函数上存在两个极值点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在区开设分店,为了确定在该区设分店的个数,该公司对该市开设分店的其他区的数据做了初步处理后得到下列表格.记表示在各区开设分店的个数,表示这个分店的年收入之和.

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程;

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司在区开设多少个分店时,才能使区平均每个分店的年利润最大?

参考公式:回归直线方程为,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数有四个零点,则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为的菱形, .

(1)求证:平面平面

(2)若,求锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)设点 在抛物线上,直线 分别与轴交于点 .求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右顶点,点满足

)求椭圆的方程;

)设直线经过点且与交于不同的两点,试问:在轴上是否存在点,使得直线 与直线的斜率的和为定值?若存在,请求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案