精英家教网 > 高中数学 > 题目详情
已知集合S={-1,0,1},P={1,2,3,4},从集合S,P中各取一个元素作为点的坐标,可作出不同的点共有 ______个.
由题意知本题是一个分步计数问题,
首先从S集合中选出一个数字共有3种选法,
再从P集合中选出一个数字共有4种结果,
取出的两个数字可以作为横标,也可以作为纵标,共还有一个排列,
∴共有C31C41A22=24,
其中(1,1)重复了一次.去掉重复的数字有24-1=23种结果,
故答案为:23
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知集合S={-1,0,1},P={1,2,3,4},从集合S,P中各取一个元素作为点的坐标,可作出不同的点共有
23
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={1,2,3,…,2011,2012}设A是S的至少含有两个元素的子集,对于A中的任意两个不同的元素x,y(x>y),若x-y都不能整除x+y,则称集合A是S的“好子集”.
(Ⅰ)分别判断数集P={2,4,6,8}与Q={1,4,7}是否是集合S的“好子集”,并说明理由;
(Ⅱ)证明:若A是S的“好子集”,则对于A中的任意两个不同的元素x,y(x>y),都有x-y≥3;
(Ⅲ) 求集合S的“好子集”A所含元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年四川绵阳高中高三第二次诊断性考试文科数学试卷(解析版) 题型:选择题

已知集合S={12},集合T={x|(x-1)(x-3)=0},那么ST=( )

A B{1}

C{12} D{123}

 

查看答案和解析>>

科目:高中数学 来源:2011年云南省高三数学一轮复习章节练习:计数原理(解析版) 题型:解答题

已知集合S={-1,0,1},P={1,2,3,4},从集合S,P中各取一个元素作为点的坐标,可作出不同的点共有     个.

查看答案和解析>>

同步练习册答案