精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线关于轴对称,它的顶点在坐标原点,点在抛物线上.

(1)写出该抛物线的标准方程及其准线方程;

(2)过点作两条倾斜角互补的直线与抛物线分别交于不同的两点,求证:直线的斜率是一个定值.

【答案】(1) 抛物线的方程为及其准线方程是 (2)见解析

【解析】试题分析:(1)设抛物线方程在抛物线上,可求得值;

(2)设直线的斜率为,直线的斜率为,由, 的斜率存在且倾斜角互补,可得: ,从而可证明直线的斜率是一个定值.

试题解析:

(1)由已知条件,可设抛物线方程.

在抛物线上, ,得.

故所求抛物线的方程为及其准线方程是.

(2)设直线的斜率为,直线的斜率为.

,

, 的斜率存在且倾斜角互补, .

在抛物线上,得

.

.

直线直线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图(如图),解答下列问题:

分组

频数

频率

[50,60)

4

0.08

[60,70)

8

0.16

[70,80)

10

0.20

[80,90)

16

0.32

[90,100]

合计

(1)填充频率分布表中的空格;

(2)不具体计算频率/组距,补全频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是双曲线的左右焦点,点在双曲线上,且,则下列结论正确的是( )

A. 则双曲线离心率的取值范围为

B. 则双曲线离心率的取值范围为

C. 则双曲线离心率的取值范围为

D. 则双曲线离心率的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是,且当时,取得最大值3.

(1)求的解析式及单调增区间;

(2)若,且,求

(3)将函数的图象向右平移个单位长度后得到函数的图象,且是偶函数,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求△APB的重心G的轨迹方程.

(2)证明∠PFA=∠PFB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)问题发现

如下图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE。

填空:∠AEB的度数为____________

线段AD、BE之间的数量关系是_________

(2)拓展探究

如下图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

(3)解决问题

如下图,在正方形ABCD中,CD=。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足0<an<1,且an+1+ =2an+ (n∈N*).
(1)证明:an+1<an
(2)若a1= ,设数列{an}的前n项和为Sn , 证明: <Sn ﹣2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为菱形, 底面为直线上一动点.

Ⅰ)求证:

Ⅱ)若 分别为线段 的中点,求证: 平面

Ⅲ)直线上是否存在点,使得平面平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案