精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,已知为抛物线上两点,为抛物线焦点.分别过作抛物线的切线交于点.

(1)若,求

(2)若分别交轴于两点,试问的外接圆是否过定点?若是,求出该定点坐标,若不是,请说明理由.

【答案】(1);(2)见解析

【解析】

(1)设直线的方程为,与抛物线联立可得,由可得,可解出的值,然后由可得到答案;(2)设,可表示出直线的方程,令,可得,然后可以证明,即,同理可证明,则四点共圆,即的外接圆过定点.

(1)由题意知直线的斜率存在,设其为

.

,则由根与系数关系有

可得

结合①②可求得.

所以.

(2)的外接圆过定点

抛物线方程为,求导得,设

可知直线方程

,得,故.

所以.

同理可得.

四点共圆,即的外接圆过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求所有的正整数,使得是完全平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的命题是(

A.已知随机变量服从正态分布,则

B.由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀

C.以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则ck的值分别是0.3

D.在回归分析模型中,残差平方和越大,说明模型的拟合效果越差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2020年清明节前后3天每天下雨的概率为70%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率:用随机数,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:

332 714 740 945 593 468 491 272 073 445

992 772 951 431 169 332 435 027 898 719

1)求出的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;

2)从2011年开始到2019年该地区清明节当天降雨量(单位:)如下表:(其中降雨量为0表示没有下雨).

时间

2011

2012

2013

2014

2015

2016

2017

2018

2019

年份

1

2

3

4

5

6

7

8

9

降雨量

29

28

26

27

25

23

24

22

21

经研究表明:从2011年开始至2020年, 该地区清明节有降雨的年份的降雨量与年份成线性回归,求回归直线,并计算如果该地区2020年()清明节有降雨的话,降雨量为多少?(精确到0.01

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD的一边CD内任取一点E,过E作对角线AC的平行线,交对角线BD于点G、交边AD于点H、交边BA的延长线于点F,联结BH交DF于点M求证:

(1)C、G、M三点共线;

(2)C、E、M、F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3.从这8名运动员中随机选择4人参加比赛.

1)设A为事件选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会,求事件发生的概率;

2)设为选出的4人中种子选手的人数,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县共有90间农村淘宝服务站,随机抽取5间,统计元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.若网购金额(单位:万元)不小于18的服务站定义为优秀服务站,其余为非优秀服务站.从随机抽取的5间服务站中再任取2间作网购商品的调查,则恰有1间是优秀服务站的概率为_____

查看答案和解析>>

同步练习册答案