定义在(0,+∞)上的函数f(x)满足f(xy)=f(x)+f(y),且当x>1时,f(x)<0.
(1)求f(1);
(2)证明f(x)在(0,+∞)上单调递减;
(3)若关于x的不等式f(k•3x)-f(9x-3x+1)≥f(1)恒成立,求实数k的取值范围.
分析:(1)令x=y=1,根据定义在(0,+∞)上的函数f(x)恒有f(xy)=f(x)+f(y),我们易构造关于f(1)的方程,解方程即可求出求f(1);
(2)根据已知中定义在(0,+∞)上的函数f(x)恒有f(xy)=f(x)+f(y),并且x>1时,f(x)<0恒成立,结合函数单调性的证明方法--作差法(定义法)我们即可得到f(x)在(0,+∞)上单调递减;
(3)结合(1)、(2)的结论,我们可将不等式f(k•3x)-f(9x-3x+1)≥f(1)转化为一个指数不等式,进而利用换元法可将问题转化为一个二次不等式恒成立问题,解答后即可得到满足条件的实数k的取值范围.
解答:解:(1)∵f(xy)=f(x)+f(y),
令x=y=1,
则F(1)=2f(1)
∴f(1)=0; (5分)
证明:(2)由f(xy)=f(x)+f(y)
可得
f()=f(y)-f(x),
设x
1>x
2>0,
f(x1)-f(x2)=f(),
>1,
∴
f()<0,即f(x
1)-f(x
2)<0
∴f(x
1)<f(x
2),所以f(x)在(0,+∞)上单调递减;(10分)
(3)因为f(k•3
x)-f(9
x-3
x+1)≥f(1),
所以f(k•3
x)≥f(9
x-3
x+1),由(2)得
(*)恒成立,
令t=3
x>0,则(*)可化为t
2-(k+1)t+1≥0对任意t>0恒成立,且k>0,
∴(k+1)
2-4≤0
∴0<k≤1.(15分)
点评:本题考查的知识点是抽象函数及其应用,函数单调性的性质,其中(1)的关键是“凑配”思想的应用,(2)的关键是将f(xy)=f(x)+f(y),变型为f(xy)-f(y)=f(x),从而得到f(x
1)-f(x
2)=f(
),(3)的关键是利用(1)(2)的结论对不等式f(k•3
x)-f(9
x-3
x+1)≥f(1)进行变形.