精英家教网 > 高中数学 > 题目详情
(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,则sin(α-
π
4
)=(  )
分析:利用平面向量的数量积运算法则列出关系式,再利用同角三角函数间的基本关系求出sinα与cosα的值,所求式子利用两角和与差的正弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.
解答:解:∵
a
=(sinα,1),
b
=(2,2cosα-
2
),
a
b

∴2sinα+2cosα-
2
=0,即sinα+cosα=
2
2

∵sin2α+cos2α=1,
π
2
<α<π,
∴sinα=
2
+
6
4
,cosα=
2
-
6
4

则sin(α-
π
4
)=
2
2
(sinα-cosα)=
2
2
×(
2
+
6
4
-
2
-
6
4
)=
3
2

故选D
点评:此题考查了两角和与差的正弦函数公式,以及数量积的坐标表达式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•德州二模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,该双曲线与抛物线y2=16x的准线交于A,B两点,若|AB|=6
5
,则双曲线的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程
y
=0.68
x
+54.6


表中有一个数据模糊不清,请你推断出该数据的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)为了解某校教师使用多媒体进行教学的情况,将全校200名 教师按一学期使用多媒体进行教学的次数分成了[0,9),[10,19),[20,29),[30,39),[40,49)五层.现采用分层抽样从该校教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图,据此可知该校一学期使用多媒体进行教学的次数在[30,39)内的教师人数为
40
40

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下
等级 1 2 3 4 5
频率 0.05 m 0.15 0.35 n
(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

同步练习册答案