精英家教网 > 高中数学 > 题目详情

【题目】某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量 与天数的对应关系服从图①所示的函数关系;乙城市的日销售量与天数的对应关系服从图②所示的函数关系;每件产品的销售利润与天数的对应关系服从图③所示的函数关系,图①是抛物线的一部分.

图①,图,图

1)设该产品的销售时间为,日销售利润为的解析式;

2)若在30天的销售中,日销售利润至少有一天超过2万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.

【答案】(1) (2)不可以投入投入批量生产,答案见解析.

【解析】试题分析:(1根据所给图象分别求得函数的解析式,然后由可得的解析式;(2)由题意将问题转化为判断函数的最大值是否超过2万元即可,故求分段函数的最值即可。

试题解析

(1)

由题可知,

∴当时,

时,

时,

综上可得

2)该产品不可以投入批量生产,理由如下:

时,

时,

时,

的最大值为

∴在一个月的销售中,没有一天的日销售利润超过2万元,不可以投入投入批量生产.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 ( 为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线 l 的极坐标方程是 ,射线OM: 与圆C的交点为O、P,与直线 l 的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

在区间上的极小值和极大值点。

上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y= 的定义域为A,函数y=lg(x﹣1)(x∈[2,11])的值域为B.
(1)求A和B
(2)求(CRA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,测试成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.

(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:

根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班学生进行了三次数学测试,第一次有8名学生得满分,第二次有10名学生得满分,第三次有12名学生得满分,已知前两次均为满分的学生有5名,三次测试中至少有一次得满分的学生有15名,若后两次均为满分的学生至少有名,则的值为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一条河的两岸平行,河的宽度d=600m,一艘客船从码头A出发匀速驶往河对岸的码头B.已知|AB|=1km,水流速度为2km/h, 若客船行驶完航程所用最短时间为6分钟,则客船在静水中的速度大小为( )

A.8km/h
B.km/h
C.km/h
D.10km/h

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的偶函数,对于xR,都有f(x+4)=f(x)+f(2)成立,当x1,x2[0,2]且x1≠x2时,都有 给出下列四个命题:

①f(﹣2)=0;

直线x=﹣4是函数y=f(x)的图象的一条对称轴;

函数y=f(x)在[4,6]上为减函数;

函数y=f(x)在(﹣8,6]上有四个零点.

其中所有正确命题的序号为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为

查看答案和解析>>

同步练习册答案